
These slides are intended to help a teacher develop a presentation. This PowerPoint 
covers the entire chapter and includes too many slides for a single delivery. Professors 
are encouraged to adapt this presentation in ways which are best suited for their 
students and environment.

1



2



A set of processes is deadlocked when each process in the set is blocked awaiting an 
event that can only be triggered by another blocked process in the set

typically processes are waiting the freeing up of some requested resource. 

Deadlock is permanent because none of the events is ever triggered.

Unlike other problems in concurrent process management, there is no efficient 
solution in the general case.
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Animated Slide

Click 1 Cars approach intersection

Then Cars announce their resource needs

All deadlocks involve conflicting needs for resources by two or more processes.   A 
common example is the traffic deadlock. 

The typical rule of the road in the United States is that a car at a four-way stop should 
defer to a car immediately to its right.

This rule works if there are only two or three cars at the intersection.

If all four cars arrive at about the same time, each will refrain from entering the 
intersection, this causes a  potential deadlock.

•The deadlock is only potential, not actual, because the necessary resources 
are available for any of the cars to proceed. 

•If one car eventually does proceed, it can do so.
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Animated Slide

Click 1 Cars move to deadlock

Then  Cars announce their resource need

But if all four cars ignore the rules and proceed (cautiously) into the intersection at 
the same time, then each car seizes one resource (one quadrant) but cannot proceed 
because the required second resource has already been seized by another car.

This is an actual deadlock.
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Each process needs exclusive use of both resources for a certain period of time. 

Two processes, P and Q, have the following general form:
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This illustrates the progress of two processes competing for two resources. 

• The x-axis represents progress in the execution of P 

• The y-axis represents progress in the execution of Q.

Six different paths of execution are shown.

The gray-shaded area can be referred to as a fatal region, applies to paths 3 and 4. 

• If an execution path enters this fatal region, then deadlock is inevitable. 

Note that the existence of a fatal region depends on the logic of the two processes. 

• However, deadlock is only inevitable if the joint progress of the two 
processes creates a path that enters the fatal region.
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Whether or not deadlock occurs depends on both the dynamics of the execution and 
on the details of the application.
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Discuss this diagram with students until they see that regardless of the relative timing 
of the two processes, deadlock cannot occur.
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If the amount of memory to be requested is not known ahead of time, it is difficult to 
deal with this type of deadlock by means of system design constraints. 

The best way to deal with this particular problem is, in effect, to eliminate the 
possibility by using virtual memory, which is discussed later (ch 8)
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Deadlock occurs if the Receive is blocking (i.e., the receiving process is blocked until 
the message is received). 

A design error is the cause of the deadlock. 

Such errors may be quite subtle and difficult to detect. 

Furthermore, it may take a rare combination of events to cause the deadlock; thus a 
program could be in use for a considerable period of time, even years, before the 
deadlock actually occurs.
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A graph edge directed from a process to a resource indicates a resource that has been 
requested by the process but not yet granted.

Within a resource node, a dot is shown for each instance of that resource.

A graph edge directed from a reusable resource node dot to a process indicates a 
request that has been granted
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All three must be present for deadlock to occur.
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This is actually a potential consequence of the first three.

Given that the first three conditions exist, a sequence of events may occur that lead 
to an unresolvable circular wait. 

The unresolvable circular wait is in fact the definition of deadlock.

• The circular wait listed as condition 4 is unresolvable because the first three 
conditions hold.

• Thus, the four conditions, taken together, constitute necessary and sufficient 
conditions for deadlock.
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Three general approaches exist for dealing with deadlock.

prevent deadlock 

adopt a policy that eliminates one of the conditions (conditions 1 through 4). 

avoid deadlock 

by making the appropriate dynamic choices based on the current state of 
resource allocation.

detect the presence of deadlock 

(conditions 1 through 4 hold) and take action to recover.

We discuss each of these approaches in turn.

22



23



Deadlock prevention is strategy simply to design a system in such a way that the 
possibility of deadlock is excluded.

We can view deadlock prevention methods as falling into two classes. 

• indirect method of deadlock prevention is to prevent the occurrence of one 
of the three necessary conditions listed previously (items 1 through 3). 

•direct method of deadlock prevention is to prevent the occurrence of a 
circular wait (item 4).

We now examine techniques related to each of the four

conditions.
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Mutual Exclusion

The first of the four listed conditions cannot be disallowed (in general).

• If access to a resource requires mutual exclusion, then mutual exclusion must be 
supported by the OS.

• Some resources, such as files, may allow multiple accesses for reads but only 
exclusive access for writes. 

•Even in this case, deadlock can occur if more than one process requires write 
permission.

Hold an Wait

Can be prevented by requiring that a process request all of its required resources at one time 
and blocking the process until all requests can be granted simultaneously. 

This approach is inefficient in two ways. 

1) a process may be held up for a long time waiting for all of its resource requests to 
be filled, when in fact it could have proceeded with only some of the resources.

2) resources allocated to a process may remain unused for a considerable period, 
during which time they are denied to other processes. 

Another problem is that a process may not know in advance all of the resources that it will 
require.

There is also the practical problem created by the use of modular programming or a 
multithreaded structure for an application. 

An application would need to be aware of all resources that will be requested at all 
levels or in all modules to make the simultaneous request.
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No Preemption

can be prevented in several ways. 

1) If a process holding certain resources is denied a further request, that 
process must release its original resources and, if necessary, request them 
again together with the additional resource.

2) If a process requests a resource that is currently held by another process, 
the OS may preempt the second process and require it to release its 
resources.

This latter scheme would prevent deadlock only if no two processes possessed the 
same priority.

This approach is practical only with resources whose state can be easily saved 
and restored later, as is the case with a processor.

Circular Wait

Can be prevented by defining a linear ordering of resource types. 

As with hold-and-wait prevention, circular-wait prevention may be inefficient, slowing 
down processes and denying resource access unnecessarily.
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Deadlock avoidance allows the three necessary conditions 

but makes judicious choices to assure that the deadlock point is never 
reached. 

Avoidance allows more concurrency than prevention.

With deadlock avoidance, a decision is made dynamically whether the current 
resource allocation request will, if granted, potentially lead to a deadlock. 

Deadlock avoidance requires knowledge of future process resource requests.
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A process is only started if the maximum claim of all current processes plus those of 
the new process can be met.

This strategy is hardly optimal, because it assumes the worst: 

that all processes will make their maximum claims together.
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Movie button goes to http://gaia.ecs.csus.edu/~zhangd/oscal/Banker/Banker.html
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Animation: Callouts explain resource parts of figure

This figure shows the state of a system consisting of four processes and three 
resources. 

Total amount of resources

• R1 = 9

• R2 = 3 

• R3 = 6

In the current state allocations have been made to the four processes, leaving 
available

• 1 unit of R2 

• 1 unit of R3

Is this a safe state? 

To answer this question, we ask an intermediate question:

• Can any of the four processes be run to completion with the resources 
available? 

• That is, can the difference between the maximum requirement and current 
allocation for any process be met with the available resources?
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In this case, each of the remaining processes could be completed as shown on the 
next slides
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Suppose we choose P1, 

• allocate the required resources, 

• complete P1, 

• and return all of P1’s resources to the available pool.

We are left in the state shown in Figure 6.7c on this slide
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P3 completes, resulting in the state of Figure 6.7d shown on this slide

Finally, we can complete P4. At this point, all of the processes have been run to 
completion. 

Thus, the state defined by Figure 6.7a is a safe state.
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Suppose that P1 makes the request for one additional unit each of R1 and R3; if we 
assume that the request is granted,

Is this a safe state? 

• No, 

• because each process will need at least one additional unit of R1, and there 
are none available.

Thus, on the basis of deadlock avoidance, the request by P1 should be denied and P1 
should be blocked.

NOTE: This is not a deadlocked state. 

It merely has the potential for deadlock. 

It is possible, for example, that if P1 were run from this state it would subsequently 
release one unit of R1 and one unit of R3 prior to needing these resources again. 

•If that happened, the system would return to a safe state. 

•Thus, the deadlock avoidance strategy does not predict deadlock with 
certainty; it merely anticipates the possibility of deadlock and assures that 
there is never such a possibility.
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This suggests the following deadlock avoidance strategy, 

which ensures that the system of processes and resources is always in a safe 
state. 

When a process makes a request for a set of resources, assume that the request is 
granted, update

the system state accordingly, and then determine if the result is a safe state. If so,

grant the request and, if not, block the process until it is safe to grant the request.
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This slide gives an abstract version of the deadlock avoidance logic. 

The main algorithm is shown in part (b).

With the state of the system defined by the data structure state, request[*] is a vector 
defining the resources requested by process i.

First, a check is made to assure that the request does not exceed the original claim of 
the process. 

• If the request is valid, the next step is to determine if it is possible to fulfill 
the request (i.e., there are sufficient resources available). 

• If it is not possible, then the process is suspended. 

• If it is possible, the final step is to determine if it is safe to fulfill the 
request. To do this, the resources are tentatively assigned to process i 
to form newstate.
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Then a test for safety is made using the algorithm in Figure 6.9c.
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Deadlock avoidance has the advantage that it is not necessary to preempt and

rollback processes, as in deadlock detection, and is less restrictive than deadlock

prevention. 
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However, it does have a number of restrictions on its use:

• The maximum resource requirement for each process must be stated in advance.

• The processes under consideration must be independent; 

that is, the order in which they execute must be unconstrained by any 
synchronization requirements.

• There must be a fixed number of resources to allocate.

• No process may exit while holding resources.

42



43



Deadlock checks can be made as frequently as each resource request or, less 
frequently, depending on how likely it is for a deadlock to occur. 

Checking at each resource request has two advantages: 

• it leads to early detection, 

• the algorithm is relatively simple because it is based on incremental changes 
to the state of the system.

On the other hand, such frequent checks consume considerable processor time.
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A common algorithm for deadlock detection is one described in [COFF71].

The Allocation matrix and Available vector described in the previous section are used. 

In addition, a request matrix Q is defined such that Qij represents the amount of 
resources of type j requested by process i. 

The algorithm proceeds by marking processes that are not deadlocked. Initially, all 
processes are unmarked. 
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The strategy in this algorithm is to find a process whose resource requests can be 
satisfied with the available resources,

and then assume that those resources are granted and that the process runs to 
completion and releases all of its resources. 

The algorithm then looks for another process to satisfy. 

Note that this algorithm does not guarantee to prevent deadlock;

• That will depend on the order in which future requests are granted.

• All that it does is determine if deadlock currently exists.
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1.  Mark P4, because P4 has no allocated resources.

2. Set W = (0 0 0 0 1).

3. The request of process P3 is less than or equal to W, so mark P3 and set W=W + (0 
0 0 1 0) = (0 0 0 1 1).

4. No other unmarked process has a row in Q that is less than or equal to W.

Therefore, terminate the algorithm.

The algorithm concludes with P1 and P2 unmarked, indicating that these processes 
are deadlocked.
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There are strengths and weaknesses to all of the strategies for dealing with deadlock. 

Rather than attempting to design an OS facility that employs only one of these 
strategies, it might be more efficient to use different strategies in different situations.
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Five philosophers live in a house, where a table is laid for them. 

The life of each philosopher consists principally of thinking and eating, and through 
years of thought, all of the philosophers had agreed that the only food that 
contributed to their thinking efforts was spaghetti. 

Due to a lack of manual skill, each philosopher requires two forks to eat spaghetti.

A philosopher wishing to eat goes to his or her assigned place at the table and, using 
the two forks on either side of the plate, takes and eats some spaghetti.
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Each philosopher picks up first the fork on the left and then the fork on the right.

After the philosopher is finished eating, the two forks are replaced on the table. 

This solution, alas, leads to deadlock:

•If all of the philosophers are hungry at the same time, they all sit down, they 
all pick up the fork on their left, and they all reach out for the other fork, 
which is not there. 

In this undignified position, all philosophers starve.
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We could consider adding an attendant who only allows four philosophers at a time 
into the dining room.

With at most four seated philosophers, at least one philosopher will have access to 
two forks. 

This slide shows such a solution, again using semaphores. This solution is free of 
deadlock and starvation.
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This slide shows a solution to the dining philosophers problem using a monitor – and is continued on 
next slide

A vector of five condition variables is defined, one condition variable per fork.

These condition variables are used to enable a philosopher to wait for the availability of a fork. 

• In addition, there is a Boolean vector that records the availability status of each fork (true 
means the fork is available). 

The monitor consists of two procedures. 

• The get_forks  procedure is used by a philosopher to seize his or her left and right forks. 

• If either fork is unavailable, the philosopher process is queued on the appropriate 
condition variable. 

• This enables another philosopher process to enter the monitor.

• The release-forks  procedure is used to make two forks available.

Note that the structure of this solution is similar to that of the semaphore solution proposed in Figure 
6.12. 

In both cases, a philosopher seizes first the left fork and then the right fork. 

Unlike the semaphore solution, this monitor solution does not suffer from deadlock, because only one 
process at a time may be in the monitor.

For example, the first philosopher process to enter the monitor is guaranteed that it can pick up the 
right fork after it picks up the left fork before the next philosopher to the right has a chance to seize its 
left fork, which is this philosopher’s right fork.
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a pipe is a circular buffer allowing two processes to communicate on the producer-
consumer model. 

Thus, it is a first-in-first-out queue, written by one process and read by 
another.

There are two types of pipes: named and unnamed. 

•Only related processes can share unnamed pipes, 

•while either related or unrelated processes can share named pipes.
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A software mechanism that informs a process of the occurrence of asynchronous 
events.

• A signal is similar to a hardware interrupt but does not employ priorities.

• i.e., all signals are treated equally; signals that occur at the same time are 
presented to a process one at a time, with no particular ordering.

Processes may send each other signals, or the kernel may send signals internally.

A signal is delivered by updating a field in the process table for the process to which 
the signal is being sent. Because each signal is maintained as a single bit, signals of a 
given type cannot be queued. 

A signal is processed just after a process wakes up to run or whenever the process is 
preparing to return from a system call. A process may respond to a signal by 
performing some default action (e.g., termination), executing a signal handler 
function, or ignoring the signal.
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Two types of atomic operations are defined in Linux: 

•integer operations, which operate on an integer variable, and 

•bitmap operations, which operate on one bit in a bitmap
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Only one thread at a time can acquire a spinlock.

Any other thread attempting to acquire the same lock will keep trying (spinning) until 
it can acquire the lock. 

In essence a spinlock is  built on an integer location in memory that is checked by 
each thread before it enters its critical section. 

• If the value is 0, the thread sets the value to 1 and enters its critical section. 

• If the value is nonzero, the thread continually checks the value until it is zero. 

The spinlock is easy to implement but has the disadvantage that locked-out threads 
continue to execute in a busy-waiting mode. 

• Thus spinlocks are most effective in situations where the wait time for 
acquiring a lock is expected to be very short, say on the order of less than two 
context changes.
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Linux provides a semaphore interface corresponding to that in UNIX SVR4. 

Internally, Linux provides an implementation of semaphores for its own use.

That is, code that is part of the kernel can invoke kernel semaphores.

These kernel semaphores cannot be accessed directly by the user program via system 
calls.

They are implemented as functions within the kernel and are thus more 
efficient than user-visible semaphores.

Linux provides three types of semaphore facilities in the kernel: 

• binary semaphores,

• counting semaphores, and 

• reader-writer semaphores.
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In addition to the concurrency mechanisms of UNIX SVR4, Solaris supports four 
thread synchronization primitives:

• Mutual exclusion (mutex) locks

• Semaphores

• Multiple readers, single writer (readers/writer) locks

• Condition variables

75



The initialization functions for the primitives fill in some of the data members.

Once a synchronization object is created, there are essentially only two operations 
that can be performed:

• enter (acquire lock) and 

• release (unlock).

There are no mechanisms in the kernel or the threads library to enforce mutual 
exclusion or to prevent deadlock.

• If a thread attempts to access a piece of data or code that is supposed to be 
protected but does not use the appropriate synchronization primitive, then 
such access occurs. 

• If a thread locks an object and then fails to unlock it, no kernel action is 
taken.

All of the synchronization primitives require the existence of a hardware instruction 
that allows an object to be tested and set in one atomic operation.
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Movie button links to Solaris RW Lock animation/simulation 
http://gaia.ecs.csus.edu/~zhangd/oscal/SolarisRWLock/SolarisRWLock.html
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Windows provides synchronization among threads as part of the object architecture.

The most important methods of synchronization are 

• Executive dispatcher objects, 

• user mode critical sections, 

• slim reader-writer locks, and 

• condition variables. 

Dispatcher objects make use of wait functions.

We first describe wait functions and then look at the synchronization methods.
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The wait functions allow a thread to block its own execution. 

•The wait functions do not return until the specified criteria have been met.

•The type of wait function determines the set of criteria used.

When a wait function is called, it checks whether the wait criteria have been met. 

• If the criteria have not been met, the calling thread enters the wait state. 

• It uses no processor time while waiting for the criteria to be met.
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The first five object types in the table are specifically designed to support 
synchronization.

The remaining object types have other uses but also may be used for synchronization.

Each dispatcher object instance can be in either a signaled or unsignaled state.

A thread can be blocked on an object in an unsignaled state; 

the thread is released when the object enters the signaled state
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Critical sections provide a synchronization mechanism similar to that provided by mutex 
objects, 

except that critical sections can be used only by the threads of a single process. 

Event, mutex, and semaphore objects can also be used in a single process application, but 
critical sections provide a much faster, more efficient mechanism for mutual-exclusion 
synchronization.

Critical sections use a sophisticated algorithm when trying to acquire the mutex.

• If the system is a multiprocessor, the code will attempt to acquire a spin-lock.

• Effectively the spinlock optimizes for the case where the thread that currently owns 
the critical section is executing on another processor. 

• If the spinlock cannot be acquired within a reasonable number of iterations, a 
dispatcher object is used to block the thread so that the Kernel can dispatch another 
thread onto the processor.

•The dispatcher object is only allocated as a last resort. 

Most critical sections are needed for correctness, but in practice are rarely contended. By 
lazily allocating the

dispatcher object the system saves significant amounts of kernel virtual memory.
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The process must declare a CONDITION_VARIABLE and initialize it in some thread by 
calling InitializeConditionVariable. 

Condition variables can be used with either critical sections or SRW locks, so there 
are two methods which sleep on the specified condition

and releases the specified lock as an atomic operation:

• SleepConditionVariableCS

• SleepConditionVariableSRW, 

There are two wake methods, which wake one or all of the sleeping threads:

• WakeConditionVariable and

• WakeAllConditionVariable,

85



86



87


