Operating Systems:
Internals and Design Principles, 6/E
William Stallings

Chapter 6
Concurrency: Deadlock and
Starvation

These slides are intended to help a teacher develop a presentation. This PowerPoint
covers the entire chapter and includes too many slides for a single delivery. Professors
are encouraged to adapt this presentation in ways which are best suited for their
students and environment.

e
@)\E\A Roadmap
- Principals of Deadlock

— Deadlock prevention

— Deadlock Avoidance

— Deadlock detection

— An Integrated deadlock strategy

 Dining Philosophers Problem

» Concurrency Mechanisms in UNIX, Linux,
Solaris and Windows E

Vs

2

QEX%A \ Deadlock

» A set of processes is deadlocked when
each process in the set is blocked awaiting
an event that can only be triggered by
another blocked process in the set
— Typically involves processes competing for

the same set of resources

* No efficient solution

A set of processes is deadlocked when each process in the set is blocked awaiting an
event that can only be triggered by another blocked process in the set

typically processes are waiting the freeing up of some requested resource.

Deadlock is permanent because none of the events is ever triggered.

Unlike other problems in concurrent process management, there is no efficient
solution in the general case.

| need
quad A and

B

Animated Slide
Click 1 Cars approach intersection

Then Cars announce their resource needs

All deadlocks involve conflicting needs for resources by two or more processes. A
common example is the traffic deadlock.

The typical rule of the road in the United States is that a car at a four-way stop should
defer to a car immediately to its right.

This rule works if there are only two or three cars at the intersection.

If all four cars arrive at about the same time, each will refrain from entering the
intersection, this causes a potential deadlock.

*The deadlock is only potential, not actual, because the necessary resources
are available for any of the cars to proceed.

*If one car eventually does proceed, it can do so.

Actual Deadlock

HALT until E HALT until
D is free E Cis free
i .

HALT until
HALT until B is free

A is free

Animated Slide
Click 1 Cars move to deadlock
Then Cars announce their resource need

But if all four cars ignore the rules and proceed (cautiously) into the intersection at
the same time, then each car seizes one resource (one quadrant) but cannot proceed
because the required second resource has already been seized by another car.

This is an actual deadlock.

L
Q)\ﬁ Two Processes P and Q

» Lets look at this with Process P Process Q
two processes Pand Q A Get B

» Each needing Getb Get A
exclusive access to a Release A Release B
resource A and B for a Release B Release A

period of time

-

&

Each process needs exclusive use of both resources for a certain period of time.

Two processes, P and Q, have the following general form:

%’\ Joint Progress
@ Diagram of Deadlock

Progress

of Q 4
1
L 3
Release
A
A Release
Required B
GetA
B
Required
GetB
o Progress
3 « 7 of P
v Get A Get B Release A Release B
/) =both Pand Q want resource A V_Y\J
A
Ry =both Pand Q want resource B Required _/W—\J
D = deadlock-inevitable region B Required
) = possible progress path of Pand Q
—_

Horizontal portion of path indicates P is executing and Q is waiting
Vertical portion of path indicates Q is executing and P is waiting
Figure 6.2 Example of Deadlock

This illustrates the progress of two processes competing for two resources.

* The x-axis represents progress in the execution of P

* The y-axis represents progress in the execution of Q.

Six different paths of execution are shown.

The gray-shaded area can be referred to as a fatal region, applies to paths 3 and 4.
* If an execution path enters this fatal region, then deadlock is inevitable.

Note that the existence of a fatal region depends on the logic of the two processes.

* However, deadlock is only inevitable if the joint progress of the two
processes creates a path that enters the fatal region.

)
Q,Eﬁ \ Alternative logic

* Suppose that P does processp Process Q
not need both ot ot B
resources at the same --- oo
time so that the two elease A ceA
processes have this Get B Release B
form .R;I:aase B .R;I;,ase A

-

&

Whether or not deadlock occurs depends on both the dynamics of the execution and
on the details of the application.

R

A Diagram of
" alternative logic

Progress
of Q
A
Release
A
4
>
>
"\A Release
Required B
GetA
B
Required
5
GetB B
S,
>
o Progress
¥ of P

GetA Release A GetB Release B

[=both Pand Q want resource A A Required B Required E

Q - .) = possible progress path of Pand Q
& both Pand Q want resouce B Horizontal portion of path indicates P1s executing and Q is waiting
Vertical portion of path mdicates Q is executing and P 1s waiting
Figure 6.3 Example of No Deadlock [BACO03]

Discuss this diagram with students until they see that regardless of the relative timing
of the two processes, deadlock cannot occur.

$

B
xﬁ\ Resource Categories

Two general categories of resources:
* Reusable

— can be safely used by only one process at a
time and is not depleted by that use.

« Consumable

A

— one that can be created (produced) and
destroyed (consumed).

10

2
% Reusable Resources

e Such as:

— Processors, I/0O channels, main and
secondary memory, devices, and data
structures such as files, databases, and
semaphores

» Deadlock occurs if each process holds
one resource and requests the other

A

11

—

%;‘\ Example of
<. Reuse Deadlock

» Consider two processes that compete for
exclusive access to a disk file D and a
tape drive T.

» Deadlock occurs if each process holds
one resource and requests the other.

&

12

2
<

Reusable Resources

Example

Process P Process Q
Step Action Step Action
Po Request (D) qp Request (T)
P, Lock (D) q, Lock (T)
P> Request (T) q, Request (D)
P3 Lock (T) a; Lock (D)
Py Perform function qQ Perform function
Ps Unlock (D) qs Unlock (T)
Ps Unlock (T) s Unlock (D)

Figure 6.4 Example of Two Processes Competing for Reusable Resources

Vs

13

—

%’\ Example 2:
o Memory Request

» Space is available for allocation of
200Kbytes, and the following sequence of
events occur

P1 P2
Request 80 Khbytes; Request 70 Kbytes;

Request 60 Khytes; Request 80 Kbytes;

» Deadlock occurs if both processes
progress to their second request

&

(2]

If the amount of memory to be requested is not known ahead of time, it is difficult to

deal with this type of deadlock by means of system design constraints.

The best way to deal with this particular problemis, in effect, to eliminate the

possibility by using virtual memory, which is discussed later (ch 8)

14

s
N\
%\A Consumable Resources

» Such as Interrupts, signals, messages,
and information in I/O buffers

» Deadlock may occur if a Receive message
is blocking

* May take a rare combination of events to
cause deadlock

&

15

,Nq\
QE}%A Example of Deadlock

» Consider a pair of processes, in which
each process attempts to receive a
message from the other process and then
send a message to the other process

P1 P2
Receive (P2); Receive (P1);
Send (P2, M1); Send (P1, M2);

Deadlock occurs if the Receive is blocking (i.e., the receiving process is blocked until
the message is received).

A design error is the cause of the deadlock.

Such errors may be quite subtle and difficult to detect.

Furthermore, it may take a rare combination of events to cause the deadlock; thus a
program could be in use for a considerable period of time, even years, before the
deadlock actually occurs.

16

%{"\ Resource Allocation
. Graphs

 Directed graph that depicts a state of the
system of resources and processes

Requests Held by
Ra P1 <

Y
[]

Bl

A
[]

Ra

(a) Resouce is requested (b) Resource is held

E:

&

A graph edge directed from a process to a resource indicates a resource that has been
requested by the process but not yet granted.

Within a resource node, a dot is shown for each instance of that resource.

A graph edge directed from a reusable resource node dot to a process indicates a
request that has been granted

%&?\ Conditions for
$© | possible Deadlock

» Mutual exclusion
— Only one process may use a resource at a
time
* Hold-and-wait
— A process may hold allocated resources while
awaiting assignment of others

* No pre-emption
— No resource can be forcibly removed form a

process holding it

E:

All three must be present for deadlock to occur.

18

Requires ...

All previous 3 conditions plus:

e Circular wait

— A closed chain of processes exists, such that
each process holds at least one resource
needed by the next process in the chain

%Q\ Actual Deadlock
1 \

&

This is actually a potential consequence of the first three.

Given that the first three conditions exist, a sequence of events may occur that lead
to an unresolvable circular wait.

The unresolvable circular wait is in fact the definition of deadlock.

* The circular wait listed as condition 4 is unresolvable because the first three
conditions hold.

* Thus, the four conditions, taken together, constitute necessary and sufficient
conditions for deadlock.

19

% v Resource Allocation
¥ Graphs of deadlock

P1 P1 P2

% 4
oo
Rb Rb
(¢) Circular wait (d) No deadlock

20

§i%

Resource Allocation
Graphs

NN

Rd

Figure 6.6 Resource Allocation Graph for Figure 6.1b

s

21

3
%0 Dealing with Deadlock
& ‘

» Three general approaches exist for
dealing with deadlock.
— Prevent deadlock
— Avoid deadlock
— Detect Deadlock

Three general approaches exist for dealing with deadlock.

prevent deadlock

adopt a policy that eliminates one of the conditions (conditions 1 through 4).

avoid deadlock

by making the appropriate dynamic choices based on the current state of
resource allocation.

detect the presence of deadlock

(conditions 1 through 4 hold) and take action to recover.

We discuss each of these approaches in turn.

22

f\Q\
Eﬁd Roadmap

®
* Principals of Deadlock
=== Deadlock prevention
— Deadlock Avoidance
— Deadlock detection
— An Integrated deadlock strategy
 Dining Philosophers Problem

» Concurrency Mechanisms in UNIX, Linux,
Solaris and Windows

s

E:

23

%%’\ Deadlock Prevention
® Strategy

» Design a system in such a way that the
possibility of deadlock is excluded.

* Two main methods

— Indirect — prevent all three of the necessary
conditions occurring at once

— Direct — prevent circular waits

oy :

Deadlock prevention is strategy simply to design a system in such a way that the
possibility of deadlock is excluded.

We can view deadlock prevention methods as falling into two classes.

* indirect method of deadlock prevention is to prevent the occurrence of one
of the three necessary conditions listed previously (items 1 through 3).

edirect method of deadlock prevention is to prevent the occurrence of a
circular wait (item 4).

We now examine techniques related to each of the four

conditions.

24

%?\ Deadlock Prevention
® Conditions 1 & 2

* Mutual Exclusion
— Must be supported by the OS

* Hold and Wait

— Require a process request all of its required
resources at one time

Mutual Exclusion
The first of the four listed conditions cannot be disallowed (in general).

* If access to a resource requires mutual exclusion, then mutual exclusion must be
supported by the OS.

* Some resources, such as files, may allow multiple accesses for reads but only
exclusive access for writes.

*Even in this case, deadlock can occur if more than one process requires write
permission.

Hold an Wait

Can be prevented by requiring that a process request all of its required resources at one time
and blocking the process until all requests can be granted simultaneously.

This approach is inefficient in two ways.

1) a process may be held up for a long time waiting for all of its resource requests to
be filled, when in fact it could have proceeded with only some of the resources.

2) resources allocated to a process may remain unused for a considerable period,
during which time they are denied to other processes.

Another problem is that a process may not know in advance all of the resources that it will
require.

There is also the practical problem created by the use of modular programming or a
multithreaded structure for an application.

An application would need to be aware of all resources that will be requested at all
levels or in all modules to make the simultaneous request.

25

Conditions 3 & 4

* No Preemption
— Process must release resource and request
again
— OS may preempt a process to require it
releases its resources

%’\ Deadlock Prevention
@" \

 Circular Wait
— Define a linear ordering of resource types

No Preemption

can be prevented in several ways.

1) If a process holding certain resources is denied a further request, that
process must release its original resources and, if necessary, request them
again together with the additional resource.

2) If a process requests a resource that is currently held by another process,
the OS may preempt the second process and require it to release its
resources.

This latter scheme would prevent deadlock only if no two processes possessed the
same priority.

This approach is practical only with resources whose state can be easily saved
and restored later, as is the case with a processor.

Circular Wait

Can be prevented by defining a linear ordering of resource types.

As with hold-and-wait prevention, circular-wait prevention may be inefficient, slowing
down processes and denying resource access unnecessarily.

26

f\Q\
@Eﬁd Roadmap

* Principals of Deadlock

— Deadlock prevention
== Deadlock Avoidance

— Deadlock detection

— An Integrated deadlock strategy
 Dining Philosophers Problem

» Concurrency Mechanisms in UNIX, Linux,
Solaris and Windows

s

E:

27

23
mﬁf@ \ Deadlock Avoidance

« A decision is made dynamically whether
the current resource allocation request
will, if granted, potentially lead to a
deadlock

» Requires knowledge of future process
requests

oy :

Deadlock avoidance allows the three necessary conditions

but makes judicious choices to assure that the deadlock point is never
reached.

Avoidance allows more concurrency than prevention.

With deadlock avoidance, a decision is made dynamically whether the current
resource allocation request will, if granted, potentially lead to a deadlock.

Deadlock avoidance requires knowledge of future process resource requests.

28

Eﬁ'\ Two Approaches to
@ | Deadlock Avoidance

* Process Initiation Denial

— Do not start a process if its demands might
lead to deadlock

* Resource Allocation Denial

— Do not grant an incremental resource request
to a process if this allocation might lead to
deadlock

&

E:

29

%\’3 \ Process
‘ Initiation Denial

» A process is only started if the maximum
claim of all current processes plus those of
the new process can be met.

* Not optimal,

— Assumes the worst: that all processes will
make their maximum claims together.

&

(2]

A process is only started if the maximum claim of all current processes plus those of

the new process can be met.

This strategy is hardly optimal, because it assumes the worst:

that all processes will make their maximum claims together.

30

A Resource .
B

Allocation Denial

» Referred to as the banker’s algorithm
— A strategy of resource allocation denial

» Consider a system with fixed number of
resources

— State of the system is the current allocation of
resources to process

— Safe state is where there is at least one
sequence that does not result in deadlock

— Unsafe state is a state that is not safe

..

Movie button goes to http://gaia.ecs.csus.edu/~zhangd/oscal/Banker/Banker.html

Safe State

+ A system consisting of four processes and
three resources.

+ Allocations are made to processors
* Is this a safe state?

%‘Q\ Determination of
Y \

=

R2 R3 Rl R2 R3 R1 R R3
Pl 3 2 2 Pl 1 0 0 Pl 2 2 2
P2 6 1 3 P2 6 1 2 P2 0 0 1
P3 3 1 4 P3 2 1 1 P3 1 0 3
P4 4 2 i P4 0 0 2 P4 4 2 0
Claim matrix C Allocation matrix A C-A
Rl R2 R3 3 R2 R3

[T 35T 6] [0 1T 1]
Resource vector R Available vector V

(a) Initial state

Animation: Callouts explain resource parts of figure

This figure shows the state of a system consisting of four processes and three
resources.

Total amount of resources

*R1=9
*R2=3
*R3=6

In the current state allocations have been made to the four processes, leaving
available

* 1 unitof R2
* 1 unit of R3

Is this a safe state?
To answer this question, we ask an intermediate question:

* Can any of the four processes be run to completion with the resources
available?

* That is, can the difference between the maximum requirement and current
allocation for any process be met with the available resources?

32

2

&Eﬁ\ Process i
 This is not possible for P1,

— which has only 1 unit of R1 and requires 2
more units of R1, 2 units of R2, and 2 units of
R3.

* |f we assign one unit of R3 to process P2,

— Then P2 has its maximum required resources
allocated and can run to completion and
return resources to ‘available’ pool

A

33

% \ After P2
\ runs to completion

» Can any of the remaining processes can
be completed?

Note P2 is
completed

A

o
w
[

Rl R2

R2 R3 R1 R R3

3 2 2 Pl 1 0 0 Pl 2 2 2

P2 0 0 0 P2 0 0 0 P2 0 0 0

P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0

Claim matrix C Allocation matnx A C-A
Rl R2 R3 Rl R2 R3
L2 1 3]s] [6 [2] 3 |
Resource vector R Available vector V
b (b) P2 runs to completion

In this case, each of the remaining processes could be completed as shown on the
next slides

§§A ' After P1 completes

(¢) P1 runs to completion

Vs

R1 R2 R3 Rl R2 R3 R1 R2 R3
Pl 0 0 0 Pl 0 0 0 Pl 0 0 0
P2 0 0 0 P2 0 0 0 P2 0 0 0
P3 3 1 4 P3 2 1 1 P3 1 0 3
P4 4 2 2 P4 0 0 2 P4 4 2 0
Claim matrix C Allocation matrix A S - 4
Rl R2 R3 R1 R2 R3
e G| L7 1 2703 |
Resource vector R Available vector V

Suppose we choose P1,
* allocate the required resources,
* complete P1,

* and return all of P1’s resources to the available pool.

We are left in the state shown in Figure 6.7c on this slide

35

P3 Completes

R1 R2 R3 R1 R2 R3 R1 2 R3
Pl 0 0 0 Pl 0 0 0 Pl 0 0 0
P2 0 0 0 P2 0 0 0 P2 0 0 0
P3 0 0 0 P3 0 0 0 P3 0 0 0
P4 4 2 2 P4 0 0 2] P4 4 2 0
Claim matrix C Allocation matnx A C-A
Rl R2 R3 Rl R2 R3
o e G | | o | |
Resource vector R Available vector V

(d) P3 runs to completion

Thus, the state defined

originally is a safe
state.

P3 completes, resulting in the state of Figure 6.7d shown on this slide

Finally, we can complete P4. At this point, all of the processes have been run to
completion.

Thus, the state defined by Figure 6.7a is a safe state.

K
®

Pl

P4

Pl

P4

> |

R

\

v Determination of an
Unsafe State

R3 Rl R2 R3 R1 R2 R3
3 2 2 Pl 1 0 0 Pl 2 2 2
] 1 3 P2 5 1 1 P2 1] 2 . .
3 1 4 | 2 1 1 p3 [1 0 e This time
4 2 2 P4 [0 0 2 P4 | 4 2 [} Suppose that
Claim matrix C Allocation matrix A C-A P1 makes the
RI R R} RI R2 R} request for one
[sTaTe] [[rT=2] additional unit
Resource vector R Available vector V each Of R1 and
(a) Initial state R3
R1 R2 R3 Rl R2 R3 ls this safe?
3 2 2 Pl 2 0 1
6 1 3 P2 5 1 1
3 1 4 P3 2 1 1
4 2 2 P4 0 0 2
Claim matrix C Allocation matrix A
R1 R2 R3 R1 R2 R3
N N S O O I I
Resource vector R Available vector V
(b) P1 requests one unit each of R1 and R3

Suppose that P1 makes the request for one additional unit each of R1 and R3; if we
assume that the request is granted,

Is this a safe state?

*No,

* because each process will need at least one additional unit of R1, and there
are none available.

Thus, on the basis of deadlock avoidance, the request by P1 should be denied and P1
should be blocked.

NOTE: This is not a deadlocked state.

It merely has the potential for deadlock.

It is possible, for example, that if P1 were run from this state it would subsequently
release one unit of R1 and one unit of R3 prior to needing these resources again.

*If that happened, the system would return to a safe state.

*Thus, the deadlock avoidance strategy does not predict deadlock with

certainty; it merely anticipates the possibility of deadlock and assures that
there is never such a possibility.

37

,NQ\
QEX%A Deadlock Avoidance

« When a process makes a request for a set
of resources,

— assume that the request is granted,
— Update the system state accordingly,

* Then determine if the result is a safe state.
— If so, grant the request and,

— if not, block the process until it is safe to grant
the request.

&

This suggests the following deadlock avoidance strategy,

E:

which ensures that the system of processes and resources is always in a safe
state.

When a process makes a request for a set of resources, assume that the request is
granted, update

the system state accordingly, and then determine if the result is a safe state. If so,

grant the request and, if not, block the process until it is safe to grant the request.

38

(% Deadlock Avoidance
" Logic

struct state {
int resource[m];
int available[m];
int claim[n][m];
int alloc[n][m];

(a) global data structures

if (alloc [i,*] + request [*] > claim (i,*])
< error >; /* total request > claim*/
else if (request [*] > available [*])
< suspend process >;
else { /* simulate alloc */
< define newstate by:
alloc [i,*] = alloc [i,*] + request [*];
available [*] = available [*] - request [*] >;

if (safe (newstate))
< carry out allocation >;

else {
< restore original state >; =
< suspend process >;
}
|
(b) resource alloc algorithm

This slide gives an abstract version of the deadlock avoidance logic.

The main algorithm is shown in part (b).

With the state of the system defined by the data structure state, request[*] is a vector
defining the resources requested by process i.

First, a check is made to assure that the request does not exceed the original claim of
the process.

* If the request is valid, the next step is to determine if it is possible to fulfill
the request (i.e., there are sufficient resources available).

* If it is not possible, then the process is suspended.

* If it is possible, the final step is to determine if it is safe to fulfill the
request. To do this, the resources are tentatively assigned to process i
to form newstate.

39

-

®

%{?\ Deadlock Avoidance
\

Logic

boolean safe (state 5) {

int currentavail[m];
process rest[<number of processes>];
currentavail = available;
rest = {all processes};
possible = true;
while (possible) {
<find a process Pk in rest such that
claim [k,*] = alloc [k,*] <= currentavail;>
if (found) ({ /* simulate execution of Py */
currentavail = currentavail + alloc [k,*];
rest = rest - {Pk};
1
else possible = false;

}

return (rest == null);

>

() test for safety algorithm (banker's algorithm)

Figure 6.9 Deadlock Avoidance Logic

Then a test for safety is made using the algorithm in Figure 6.9c.

40

Advantages
* It is not necessary to preempt and rollback
processes, as in deadlock detection,

* |t is less restrictive than deadlock
prevention.

%?\ Deadlock Avoidance
® \

Deadlock avoidance has the advantage that it is not necessary to preempt and

rollback processes, as in deadlock detection, and is less restrictive than deadlock

prevention.

(% Deadlock Avoidance
® Restrictions

* Maximum resource requirement must be
stated in advance

* Processes under consideration must be
independent and with no synchronization
requirements

* There must be a fixed number of
resources to allocate

* No process may exit while holding a

:DQSOU rces &

However, it does have a number of restrictions on its use:

* The maximum resource requirement for each process must be stated in advance.

* The processes under consideration must be independent;

that is, the order in which they execute must be unconstrained by any
synchronization requirements.

¢ There must be a fixed number of resources to allocate.

* No process may exit while holding resources.

42

B
@)ﬁ Roadmap
* Principals of Deadlock
— Deadlock prevention
— Deadlock Avoidance
- — Deadlock detection
== — An Integrated deadlock strategy

 Dining Philosophers Problem

» Concurrency Mechanisms in UNIX, Linux,
Solaris and Windows

Vs

E:

43

,NQ\
QEX%A Deadlock Detection

» Deadlock prevention strategies are very
conservative;
— limit access to resources and impose
restrictions on processes.
» Deadlock detection strategies do the
opposite

— Resource requests are granted whenever
possible.

— Regularly check for deadlock %

Deadlock checks can be made as frequently as each resource request or, less
frequently, depending on how likely it is for a deadlock to occur.

Checking at each resource request has two advantages:
* it leads to early detection,

* the algorithm is relatively simple because it is based on incremental changes
to the state of the system.

On the other hand, such frequent checks consume considerable processor time.

44

S\ﬁ \ A Common
¥ Detection Algorithm

» Use a Allocation matrix and Available
vector as previous

» Also use a request matrix Q

— Where Qij indicates that an amount of
resource j is requested by process /

* First ‘un-mark’ all processes that are not
deadlocked

— Initially that is all processes

&

E:

A common algorithm for deadlock detection is one described in [COFF71].

The Allocation matrix and Available vector described in the previous section are used.

In addition, a request matrix Q is defined such that Qij represents the amount of

resources of type j requested by process i.

The algorithm proceeds by marking processes that are not deadlocked. Initially, all

processes are unmarked.

45

s
&Eﬁ \ Detection Algorithm

1. Mark each process that has a row in the
Allocation matrix of all zeros.

2. Initialize a temporary vector W to equal
the Available vector.

3. Find an index i such that process i is
currently unmarked and the ith row of Q is

less than or equal to W.
—ie. QsW,for1sksm.
— If no such row is found, terminate

&

46

o
Q)@ Detection Algorithm cont.

4. If such a row is found,

— mark process / and add the corresponding
row of the allocation matrix to W.

—ie. setW, =W, +A,, for1sk=sm
Return to step 3.

» A deadlock exists if and only if there are
unmarked processes at the end

* Each unmarked process is deadlocked.

5 2

The strategy in this algorithm is to find a process whose resource requests can be
satisfied with the available resources,

and then assume that those resources are granted and that the process runs to
completion and releases all of its resources.

The algorithm then looks for another process to satisfy.

Note that this algorithm does not guarantee to prevent deadlock;
* That will depend on the order in which future requests are granted.

* All that it does is determine if deadlock currently exists.

@Eﬁﬁ \ Deadlock Detection

Rl R2 R3 R4 RS Rl R2 R3 R4 RS Rl R2 R3 R4 RS
prfof1[ofo]1 i [N EEN R |
P2 (ROSROS RIS RON T P21 |1])]0([0]|O0 Resource vector
P3 |ROSINON(SONNON =1 PlOo|O|O0]|1]|0
P4 |[RTS{RON T RON| T PAlO|O|O0]|O]|O Rl R2 R3 R4 RS

Request matrix Q Allocation matrix A | 0 | 0 | 0 | 0 | 1 |

Allocation vector

Figure 6.10 Example for Deadlock Detection

E:

Vs

1. Mark P4, because P4 has no allocated resources.

2.SetW=(00001).

3. The request of process P3 is less than or equal to W, so mark P3 and set W=W + (0
0010)=(00011).

4. No other unmarked process has a row in Q that is less than or equal to W.

Therefore, terminate the algorithm.

The algorithm concludes with P1 and P2 unmarked, indicating that these processes
are deadlocked.

% Recovery Strategies
* Once Deadlock Detected

» Abort all deadlocked processes

« Back up each deadlocked process to
some previously defined checkpoint, and
restart all process
— Risk or deadlock recurring

» Successively abort deadlocked processes
until deadlock no longer exists

» Successively preempt resources until

ﬁeadlock no longer exists —————— &

49

% \ Advantages
¥ and Disadvantages

Table 6.1 Summary of Deadlock D ion, P ion, and A
Approaches for Operating Systems [ISLOS0]

Resouree Allocatio Ma
Approach [SHUTEL pessen Majer mur::.gn
*Inefficient
*Works well for *Delaysprocess
. processes thatperforma | initiation
::“Malmnun e bt ofaciviy | Fot
necessary beknownby
processes
Comavitive Convenientwhen
e st applicdtoresousces
resources
easily
*Feasibleto enforce via
« A
5 “Disallows
Resource ordering Hesdeno o e incremental
problemis solvedin SEROUELS TRcEStS
system des;
*Future resource
Midway between that o o Tequirements must
Avoidance | of detection and beknown by OS
2 2 :m 2 one safe path necessary _' ;’;M
blocked forlong
peniods
Very liberal; +Never delaysprocess
Detection i losses
possible handiing

There are strengths and weaknesses to all of the strategies for dealing with deadlock.

Rather than attempting to design an OS facility that employs only one of these
strategies, it might be more efficient to use different strategies in different situations.

r\Q\
¢
% \ Roadmap
* Principals of Deadlock
— Deadlock prevention
— Deadlock Avoidance
— Deadlock detection
— An Integrated deadlock strategy

== Dining Philosophers Problem

» Concurrency Mechanisms in UNIX, Linux,
Solaris and Windows

Vs

E:

51

%’\ Dining Philosophers
" Problem: Scenario

‘ Figure 6.11 Dining Arrangement for Philosophers

Five philosophers live in a house, where a table is laid for them.

The life of each philosopher consists principally of thinking and eating, and through
years of thought, all of the philosophers had agreed that the only food that
contributed to their thinking efforts was spaghetti.

Due to a lack of manual skill, each philosopher requires two forks to eat spaghetti.

A philosopher wishing to eat goes to his or her assigned place at the table and, using
the two forks on either side of the plate, takes and eats some spaghetti.

52

,~Q\
&Eﬁ The Problem

» Devise a ritual (algorithm) that will allow
the philosophers to eat.

— No two philosophers can use the same fork at
the same time (mutual exclusion)

— No philosopher must starve to death (avoid
deadlock and starvation ... literally!)

A

53

L

%"\ A first solution using
&’ \

semaphores

/* program diningphilosophers */
semaphore fork [5] = {1};
int i;

void philosopher (int i)

while (true) {
think();
wait (fork([i]):
wait (fork [(i+1l) mod 5]);
eat();
signal (fork [(i+1l) mod 5]);
signal (fork[i]);

}

void main()

{
(2),

parbegin (philosopher (0), philosopher (1), philosopher

philosopher (3), philosopher (4));

Figure 6.12 A First Solution to the Dining Philosophers Problem

FEE

Each philosopher picks up first the fork on the left and then the fork on the right.

After the philosopher is finished eating, the two forks are replaced on the table.

This solution, alas, leads to deadlock:

*If all of the philosophers are hungry at the same time, they all sit down, they
all pick up the fork on their left, and they all reach out for the other fork,

which is not there.

In this undignified position, all philosophers starve.

54

,~Q\
% Avoiding deadlock

@ /* program diningphilosophers */
semaphore fork([5] = {1};
semaphore room = {4};

int i;

void philosopher (int 1)

while (true) {
think();
wait (room);
wait (fork([i]);
wait (fork [(i+l) mod 5]);
eat();
signal (fork [(i+1) mod 5]);
signal (fork([i]);
signal (room);

}

void main()

{

parbegin (philosopher (0), philosopher (1), philosopher (2),
philosopher (3), philosopher (4)); %

Fg Figure 6.13 A Second Solution to the Dining Philosophers Problem

We could consider adding an attendant who only allows four philosophers at a time
into the dining room.

With at most four seated philosophers, at least one philosopher will have access to
two forks.

This slide shows such a solution, again using semaphores. This solution is free of
deadlock and starvation.

B
xﬁA Solution using Monitors

monitor dining_controller;

cond ForkReady[5]; /* condition variable for synchronization */
boolean fork[5] = {true}; /* availability status of each fork */
void get_ forks(int pid) /* pid is the philosopher id number */

{
int left = pid;
int right = (++pid) % 5;
/*grant the left fork*/
if (!fork(left)
cwait (ForkReady[left]); /* queue on condition variable */
fork(left) = false;
/*grant the right fork*/
if (!fork(right)
cwait (ForkReady(right); /* queue on condition variable */
fork(right) = false:
}
void release_forks(int pid)
{
int left = pid;
int right = (++pid) % 5;
/*release the left fork*/
if (empty(ForkReady[left]) /*no one is waiting for this fork */
fork(left) = true;
else /* awaken a process waiting on this fork */
csignal (ForkReady[left]);
/*release the right fork*/
if (empty(ForkReady[right]) /*no one is waiting for this fork */
fork(right) = true;
else /* awaken a process waiting on this fork */
csignal (ForkReady[right]);

This slide shows a solution to the dining philosophers problem using a monitor — and is continued on
next slide

A vector of five condition variables is defined, one condition variable per fork.

These condition variables are used to enable a philosopher to wait for the availability of a fork.

* In addition, there is a Boolean vector that records the availability status of each fork (true
means the fork is available).

The monitor consists of two procedures.
* The get_forks procedure is used by a philosopher to seize his or her left and right forks.

« If either fork is unavailable, the philosopher process is queued on the appropriate
condition variable.

* This enables another philosopher process to enter the monitor.
* The release-forks procedure is used to make two forks available.

Note that the structure of this solution is similar to that of the semaphore solution proposed in Figure
6.12.

In both cases, a philosopher seizes first the left fork and then the right fork.

Unlike the semaphore solution, this monitor solution does not suffer from deadlock, because only one
process at a time may be in the monitor.

For example, the first philosopher process to enter the monitor is guaranteed that it can pick up the
right fork after it picks up the left fork before the next philosopher to the right has a chance to seize its
left fork, which is this philosopher’s right fork.

56

§§A \ Monitor solution cont.

void philosopher[k=0 to 4] /* the five philosopher clients */
while (true) {
<think>;
get forks(k); /* client requests two forks via monitor */
<eat spaghetti>;
release forks(k); /* client releases forks via the monitor */

Figure 6.14 A Solution to the Dining Philosophers Problem Using a Monitor

57

e
@)\é\j Roadmap
* Principals of Deadlock
— Deadlock prevention
— Deadlock Avoidance
— Deadlock detection
— An Integrated deadlock strategy

 Dining Philosophers Problem

== Concurrency Mechanisms in UNIX, Linux,

Solaris and Windows

s

— €

58

Mechanisms

» UNIX provides a variety of mechanisms for
interprocessor communication and
synchronization including:

— Pipes

— Messages

— Shared memory
— Semaphores

— Signals

&

%E"\ UNIX Concurrency
1 \

59

,~Q\
QEE\A Pipes

« A circular buffer allowing two processes to
communicate on the producer-consumer
model

— first-in-first-out queue, written by one process
and read by another.

» Two types:
— Named:
— Unnamed

A

a pipe is a circular buffer allowing two processes to communicate on the producer-
consumer model.

E:

Thus, it is a first-in-first-out queue, written by one process and read by
another.

There are two types of pipes: named and unnamed.
*Only related processes can share unnamed pipes,

*while either related or unrelated processes can share named pipes.

60

2

@Eﬁ Messages

» A block of bytes with an accompanying
type.

« UNIX provides msgsnd and msgrcv
system calls for processes to engage in
message passing.

» Associated with each process is a

message queue, which functions like a
mailbox.

A

61

s
&Eﬁ " Shared Memory

» A common block of virtual memory shared
by multiple processes.

* Permission is read-only or read-write for a
process,
— determined on a per-process basis.

+ Mutual exclusion constraints are not part

of the shared-memory facility but must be
provided by the processes using the

ghared memory. s

62

,~Q\
@Eﬁ Semaphores

* SVR4 uses a generalization of the
semWait and semSignal primitives
defined in Chapter 5;

» Associated with the semaphore are
queues of processes blocked on that
semaphore.

A

63

2

Q/%TJ \ Signals

» A software mechanism that informs a
process of the occurrence of
asynchronous events.

— Similar to a hardware interrupt, without
priorities

» A signal is delivered by updating a field in
the process table for the process to which
the signal is being sent.

A software mechanism that informs a process of the occurrence of asynchronous
events.

* A signal is similar to a hardware interrupt but does not employ priorities.

*i.e., all signals are treated equally; signals that occur at the same time are
presented to a process one at a time, with no particular ordering.

Processes may send each other signals, or the kernel may send signals internally.

A signal is delivered by updating a field in the process table for the process to which
the signal is being sent. Because each signal is maintained as a single bit, signals of a
given type cannot be queued.

A signal is processed just after a process wakes up to run or whenever the process is
preparing to return from a system call. A process may respond to a signal by
performing some default action (e.g., termination), executing a signal handler
function, or ignoring the signal.

64

Signals defined for
UNIX SVRA4.

65

<

%’\ Linux Kernel
@ Concurrency Mechanism

* Includes all the mechanisms found in
UNIX plus
— Atomic operations
— Spinlocks
— Semaphores (slightly different to SVR4)
— Barriers

A

66

s
&Eﬁ " Atomic Operations

» Atomic operations execute without
interruption and without interference

* Two types:
— Integer operations — operating on an integer
variable
— Bitmap operations — operating on one bit in a
bitmap

&

E:

Two types of atomic operations are defined in Linux:
*integer operations, which operate on an integer variable, and

*bitmap operations, which operate on one bit in a bitmap

67

Linux Atomic Operations

Table 6.3 Linux Atomic Operations

68

3 Linux Atomic Operations

Atomic Bitmap Operations

void set_bit(int nr, void *addr)

Set bit nr in the bitmap pointed to by addr

void clear_bit(int nr, void *addr)

Clear bit nr in the bitmap pointed to by addr

void change_bit (int nr, void *addr)

Invert bit nr in the bitmap pointed to by addr

int test_and set_bit (int nr, void *addr)

Set bit nr in the bitmap pointed to by addr;
return the old bit value

int test_and clear bit(int nr, void *addr)

Clear bit nr in the bitmap pointed to by addr;
retumn the old bit value

int test_and change bit(int nr, void
*addr)

Invert bit nr in the bitmap pointed to by addr;
retumn the old bit value

int test_bit(int nr, void *addr)

Return the value of bit nr in the bitmap pointed
toby addr

— §

69

S\X%A \ Spinlock

* Only one thread at a time can acquire a
spinlock.

— Any other thread will keep trying (spinning)
until it can acquire the lock.
» A spinlock is an integer

—If 0, the thread sets the value to 1 and enters
its critical section.

— If the value is nonzero, the thread continually
checks the value until it is zero.

&

Only one thread at a time can acquire a spinlock.

Any other thread attempting to acquire the same lock will keep trying (spinning) until
it can acquire the lock.

In essence a spinlock is built on an integer location in memory that is checked by
each thread before it enters its critical section.

* If the value is O, the thread sets the value to 1 and enters its critical section.

* If the value is nonzero, the thread continually checks the value until it is zero.

The spinlock is easy to implement but has the disadvantage that locked-out threads
continue to execute in a busy-waiting mode.

* Thus spinlocks are most effective in situations where the wait time for
acquiring a lock is expected to be very short, say on the order of less than two
context changes.

void spin_unlock(spinlock_t #*lock)

Linux Spinlocks

Releases given lock

void spin_unlock_irqg(spinlock_t %lock)

Releases given lock and enables local
interrupts

void spin_unlock_irgrestore(spinlock_t
*lock, unsigned long flags)

Releases given lock and restores local
interrupts to given previous state

void spin_unlock_bh(spinlock_t #*lock)

Releases given lock and enables bottom
halves

71

3
mﬁf@ \ Semaphores

» Similar to UNIX SVR4 but also provides an
implementation of semaphores for its own
use.

* Three types of kernel semaphores:
— Binary semaphores
— counting semaphores,
— reader-writer semaphores.

oy :

Linux provides a semaphore interface corresponding to that in UNIX SVR4.

Internally, Linux provides an implementation of semaphores for its own use.

That is, code that is part of the kernel can invoke kernel semaphores.

These kernel semaphores cannot be accessed directly by the user program via system
calls.

They are implemented as functions within the kernel and are thus more
efficient than user-visible semaphores.

Linux provides three types of semaphore facilities in the kernel:
* binary semaphores,
* counting semaphores, and

* reader-writer semaphores.

72

Linux Semaphores

73

R

$

Barriers

 To enforce the order in which instructions
are executed, Linux provides the memory

barrier facility.
Table 6.6 Linux Memory Barrier Operations

rmb () Prevents loads from being reordered across the barrier
wb () Prevents stores from being reordered across the barrier
mb () Prevents loads and stores from being reordered across the barrier
Barrier() Prevents the compiler from reordering loads or stores across the barrier
smp_rmb () On SMP, provides a rmb () and on UP provides a barrier ()
smp_wmb () On SMP, provides a wmb () and on UP provides a barrier ()
smp_mb () On SMP, provides amb () and on UP provides a barrier()

SMP = symmetric multiprocessor
UP =uniprocessor

74

s :
% \ Solaris Thread
@ Synchronization Primitives
* |In addition to the concurrency
mechanisms of UNIX SVR4
— Mutual exclusion (mutex) locks

— Semaphores

— Multiple readers, single writer (readers/writer)
locks

— Condition variables

A

E:

In addition to the concurrency mechanisms of UNIX SVR4, Solaris supports four

thread synchronization primitives:
* Mutual exclusion (mutex) locks
e Semaphores
e Multiple readers, single writer (readers/writer) locks

e Condition variables

75

K * Solaris Synchronization
" Data Structures

Type (1 octet)
owner (3 octets) wlock (1 octet)
waiters (2 octets)
lock (1 octet)
waiters (2 octets) union (4 octets)
(statistic pointer or
type specific info (4 octets) number of write requests)
(possibly a turnstile id,
lock type filler,
or statistics pointer)
| thread owner (4 octets)
(a) MUTEX lock

(c) Reader/writer lock

Type (1 octet)
wlock (1 octet)

waiters (2 octets) waiters (2 octets) I

count (4 octets) (d) Condition variable

|
(b) Semaphore
=
Figure 6.15 Solaris Synchronization Data Structures

The initialization functions for the primitives fill in some of the data members.

Once a synchronization object is created, there are essentially only two operations
that can be performed:

* enter (acquire lock) and

* release (unlock).

There are no mechanisms in the kernel or the threads library to enforce mutual
exclusion or to prevent deadlock.

* If a thread attempts to access a piece of data or code that is supposed to be
protected but does not use the appropriate synchronization primitive, then
such access occurs.

* If a thread locks an object and then fails to unlock it, no kernel action is
taken.

All of the synchronization primitives require the existence of a hardware instruction
that allows an object to be tested and set in one atomic operation.

76

,f\Q\
E‘Eﬁ MUTEX Lock

« A mutex is used to ensure only one thread
at a time can access the resource
protected by the mutex.

* The thread that locks the mutex must be
the one that unlocks it.

A

77

Read/Write locks

« Solaris provides classic counting
semaphores.

* The readers/writer lock allows multiple
threads to have simultaneous read-only
access to an object protected by the lock.

— It also allows a single thread to access the
object for writing at one time, while excluding

all readers.

Movie button links to Solaris RW Lock animation/simulation
http://gaia.ecs.csus.edu/~zhangd/oscal/SolarisRWLock/SolarisRWLock.html

%%’\ Semaphores and
1 \

78

,~Q\
&Eﬁ Condition Variables

* A condition variable is used to wait until a
particular condition is true.

» Condition variables must be used in
conjunction with a mutex lock.

A

79

mechanisms

« Windows provides synchronization among
threads as part of the object architecture.

* Important methods of synchronization are

— Executive dispatcher objects (using Wait
functions),

— user mode critical sections,
— slim reader-writer locks, and
— condition variables.

oy :

Windows provides synchronization among threads as part of the object architecture.

%’\ Windows concurrency
Y \

The most important methods of synchronization are
* Executive dispatcher objects,
* user mode critical sections,
* slim reader-writer locks, and

* condition variables.

Dispatcher objects make use of wait functions.

We first describe wait functions and then look at the synchronization methods.

,NQ\
QEX%A Wait Functions

* The wait functions allow a thread to block
its own execution.

— The wait functions do not return until the
specified criteria have been met.

— The type of wait function determines the set of
criteria used.

E:

&

The wait functions allow a thread to block its own execution.

*The wait functions do not return until the specified criteria have been met.

*The type of wait function determines the set of criteria used.
When a wait function is called, it checks whether the wait criteria have been met.

* If the criteria have not been met, the calling thread enters the wait state.

* [t uses no processor time while waiting for the criteria to be met.

81

@Eﬁ \ Dispatcher Objects

. .. oo Set to Signaled State Effect on Waiting
Object Type Definition When Threads
e An announcement that a
g:::unm system event has ‘Thread sets the event All released
occurred
.. | Anannouncement thata
R system event has Thread sets the event One thread released
occurred.
A mechanism that
provides mutual Owning thread or other
Mutex exclusion capabilities; thread releases the One thread released
equivalent to a binary mutex
semaphore
A counter that regulates
Semaphore | themumber of threads | SeaPROre COURL IOBS | gy riiegseq
that can use a resource
. . A counter that records | Set time arrives or time
Waitable timer P Sk ians et e Allreleased
" An inst f . +
File op:: daf!':lce e:{ 1"8 deidie 1/0 operation completes | All released
A program invocation,
including the address
Process space and resources Last thread terminates Allreleased
required to run the
program
Af' - ecatable entity Thread terminates Allreleased
within a process

Thread
Note: Shaded rows correspond to objects that exist for the sole purpose of synchronization.

— 2

The first five object types in the table are specifically designed to support

synchronization.

The remaining object types have other uses but also may be used for synchronization.

Each dispatcher object instance can be in either a signaled or unsignaled state.

A thread can be blocked on an object in an unsignaled state;

the thread is released when the object enters the signaled state

82

2
Q/%TJ Critical Sections

« Similar mechanism to mutex
— except that critical sections can be used only
by the threads of a single process.
« If the system is a multiprocessor, the code
will attempt to acquire a spin-lock.

— As a last resort, if the spinlock cannot be
acquired, a dispatcher object is used to block
the thread so that the Kernel can dispatch
another thread onto the processor. Cdl

Critical sections provide a synchronization mechanism similar to that provided by mutex
objects,

except that critical sections can be used only by the threads of a single process.

Event, mutex, and semaphore objects can also be used in a single process application, but
critical sections provide a much faster, more efficient mechanism for mutual-exclusion
synchronization.

Critical sections use a sophisticated algorithm when trying to acquire the mutex.
* If the system is a multiprocessor, the code will attempt to acquire a spin-lock.

* Effectively the spinlock optimizes for the case where the thread that currently owns
the critical section is executing on another processor.

* If the spinlock cannot be acquired within a reasonable number of iterations, a
dispatcher object is used to block the thread so that the Kernel can dispatch another
thread onto the processor.

*The dispatcher object is only allocated as a last resort.

Most critical sections are needed for correctness, but in practice are rarely contended. By
lazily allocating the

dispatcher object the system saves significant amounts of kernel virtual memory.

83

= ,_Q\
&)@ Slim Read-\Writer Locks

* Windows Vista added a user mode reader-
writer.

* The readerwriter lock enters the kernel to
block only after attempting to use a spin-
lock.

« ‘Slim’ as it normally only requires
allocation of a single pointer-sized piece of

memory. »
2
P

84

3
mﬁf@ \ Condition Variables

* Windows Vista also added condition
variables.

* The process must declare and initialise a
CONDITION_VARIABLE

» Used with either critical sections or SRW
locks

&

(]

The process must declare a CONDITION_VARIABLE and initialize it in some thread by

calling InitializeConditionVariable.

Condition variables can be used with either critical sections or SRW locks, so there

are two methods which sleep on the specified condition
and releases the specified lock as an atomic operation:
* SleepConditionVariableCS
* SleepConditionVariableSRW,

There are two wake methods, which wake one or all of the sleeping threads:

* WakeConditionVariable and
* WakeAllConditionVariable,

85

Windows/Linux
Comparison

Windows

Linux

Common synchronization primitives, such as sema-

phores, mutexes, spinlocks, timers, based on an un-
derlying wait/signal mechanism

Common synchronization primitives, such as sema-
phores, mutexes, spinlocks, timers, based on an un-
derlying sleep/wakeup mechanism

Many kernel objects are also dispatcher objects,
meaning that threads can synchronize with them
using a common event mechanism, available at
user-mode. Process and thread termination are
events, I/0 completion is an event

Threads can wait on multiple dispatcher objects at
the same time

Processes can use the select() system call to wait on
1/0 from up to 64 file descriptors

User-mode readerwriter locks and condition vari-
ables are supported

User-mode reader/writer locks and condition vari-
ables are supported

Many hardware atomic operations, such as atomic
increment/decrement, and compare-and-swap, are
supported

Many hardware atomic operations, such as atomic
increment/decrement, and compare-and-swap, are
supported

A non-locking atomic LIFO queue, called an
SLIST, is supported using compare-and-swap;
widely used in the OS and also available to user

programs

86

Windows/Linux
Comparison cont.

Windows

Linux

A large variety of synchronization mechanisms
exist within the kernel to improve scalability. Many
are based on simple compare-and-swap mecha-
nisms, such as push-locks and fast references of
objects

Named pipes, and sockets support remote procedure
calls (RPCs), as does an efficient Local Procedure
Call mechanism (ALPC), used within a local system.
ALPC is used heavily for communicating between
clients and local services

Named pipes, and sockets support remote proce-
dure calls (RPCs)

Asynchronous Procedure Calls (APCs) are used
heavily within the kernel to get threads to act upon
themselves (e.g. termination and 1/O completion
use APCs since these operations are easier to im-
plement in the context of a thread rather than
cross-thread). APCs are also available for user-
mode, but user-mode APCs are only delivered
when a user-mode thread blocks in the kernel

Unix supports a general signal mechanism for com-
munication between processes. Signals are modeled
on hardware interrupts and can be delivered at any
time that they are not blocked by the receiving
process; like with hardware interrupts, signal
semantics are complicated by multi-threading

Hardware support for deferring interrupt processing
until the interrupt level has dropped Is provided

by the Deferred Procedure Call (DPC) control
object

Uses tasklets to defer interrupt processing until the
interrupt level has dropped

87

