
These slides are intended to help a teacher develop a presentation. This PowerPoint 
covers the entire chapter and includes too many slides for a single delivery. Professors 
are encouraged to adapt this presentation in ways which are best suited for their 
students and environment.

1



We begin with an overview, followed by a look at various file organization schemes.

Although file organization is generally beyond the scope of the operating system, it is 
essential to have a general understanding of the common alternatives to appreciate 
some of the design tradeoffs involved in file management. 

The remainder of this chapter looks at other topics in file management.

2



One of the most important and widely used categories of operating systems:

• embedded operating systems. 

“Embedded system. A combination of computer hardware and software, and perhaps 
additional mechanical or other parts, designed to perform a dedicated function. In 
many cases, embedded systems are part of a larger system or product, as in the case 
of an antilock braking system in a car.”

3



Often, embedded systems are tightly coupled to their environment.

This can give rise to real-time constraints imposed by the need to interact with the 
environment. 

Constraints, such as 

• required speeds of motion, 

• required precision of measurement, 

• required time durations, dictate the timing of software operations. 

• If multiple activities must be managed simultaneously, this imposes more 
complex real-time constraints.

4



5



This figure shows in general terms an embedded system organization. 

6



In addition to the processor and memory, there are a number of elements that differ 
from the typical desktop or laptop computer.

• There may be a variety of interfaces that enable the system to measure, 
manipulate, and otherwise interact with the external environment.

• The human interface may be as simple as a flashing light or as complicated 
as real-time robotic vision.

• The diagnostic port may be used for diagnosing the system that is being 
controlled

• Special-purpose field programmable (FPGA), application specific (ASIC), or 
even nondigital hardware may be used to increase performance or safety.

• Software often has a fixed function and is specific to the application.

7



8



Real-time operation: 

• In many embedded systems, the correctness of a computation depends, in part, on the time 
at which it is delivered. 

• Often, real-time constraints are dictated by external I/O and control stability requirements.

Reactive operation: 

• Embedded software may execute in response to external events. 

• If these events do not occur periodically or at predictable intervals, the embedded software 
may need to take into account worst-case conditions and set priorities for execution of 
routines.

Configurability: 

• Because of the large variety of embedded systems, there is a large variation in the 
requirements, both qualitative and quantitative, for embedded OS functionality. 

• Thus, an embedded OS intended for use on a variety of embedded systems must lend itself 
to flexible configuration so that only the functionality needed for a specific application and 
hardware suite is provided. 

I/O device flexibility:

• There is virtually no device that needs to be supported by all versions of the OS, and the 
range of I/O devices is large. 

Streamlined protection mechanisms: 

• Embedded systems are typically designed for a limited, well-defined functionality. Untested 
programs are rarely added to the software. 

• After the software has been configured and tested, it can be assumed to be reliable.

• Thus, apart from security measures, embedded systems have limited protection 
mechanisms.

Direct use of interrupts: 

• General-purpose operating systems typically do not permit any user process to use 
interrupts directly. 

9



There are two general approaches to developing an embedded OS. 

• The first approach is to take an existing OS and adapt it for the embedded 
application.

• The other approach is to design and implement an OS intended solely for 
embedded use

10



Typically use Linux, FreeBSD, Windows, and other general-purpose operating systems. 

• Such operating systems are typically slower and less predictable than a 
special-purpose embedded OS.

• An advantage of this approach is that the embedded OS derived from a 
commercial general-purpose OS is based on a set of familiar interfaces, which 
facilitates portability.

The disadvantage of using a general-purpose OS is that it is not optimized for real-
time and embedded applications.

11



Typical characteristics of a specialized embedded OS include the following:

• Has a fast and lightweight process or thread switch

• Scheduling policy is real time and dispatcher module is part of scheduler 
instead of separate component.

• Has a small size

• Responds to external interrupts quickly; typical requirement is response time 
of less than 10 μs

• Minimizes intervals during which interrupts are disabled

• Provides fixed or variable sized partitions for memory management as well 
as the ability to lock code and data in memory

• Provides special sequential files that can accumulate data at a fast rate

12



The characteristics just listed are common in embedded operating systems with real-
time requirements.

However, for complex embedded systems, the requirement may emphasize 
predictable operation over fast operation, necessitating different design decisions, 
particularly in the area of task scheduling.

13



14



The Embedded Configurable Operating System (eCos) is an open source, royalty-free, 
real-time OS intended for embedded applications. 

The system is targeted at high-performance small embedded systems. 

• For such systems, an embedded form of Linux or other commercial OS would 
not provide the streamlined software required.

15



The top level of the eCos configuration tool as seen by the tool user. 

Each of the items on the list in the left-hand window can be selected or deselected

16



17



This figure shows a typical example of the overall process of creating the binary 
image to execute in the embedded system. 

This process is run on a source system, e.g. Windows or Linux platform, and the 
executable image is destined to execute on a target embedded system, such as a 
sensor in an industrial environment.

At the highest software level is the application source code for the particular 
embedded application.

• This code is independent of eCos but makes use of application programming 
interfaces (API) to sit on top of the eCos software. 

• There may be only one version of the application source code, or there may 
be variations for different versions of the target embedded platform.

In this example, the GNU make utility is used to selectively determine which pieces of 
a program need to be compiled or recompiled (in the case of a modified version of 
the source code) and issues the commands to recompile them.

18



A key design requirement for eCos is portability to different architectures and 
platforms with minimal effort.

To met this requirement, eCos consists of a layered set of components

19



20



21



The HAL is implemented as three separate modules:

Architecture: 

• Defines the processor family type.

• This module contains the code necessary for processor startup, interrupt 
delivery, context switching, and other functionality specific to the instruction 
set architecture of that processor family.

Variant:

• Supports the features of the specific processor in the family. 

• An example of a supported feature is an on-chip module such as a memory 
management unit (MMU).

Platform: 

• Extends the HAL support to tightly coupled peripherals like interrupt 
controllers and timer devices. 

• This module defines the platform or board that includes the selected 
processor architecture and variant. 

• It includes code for startup, chip selection configuration, interrupt 
controllers, and timer devices.

22



The eCos kernel was designed to satisfy four main objectives:

Low interrupt latency:

• The time it takes to respond to an interrupt and begin executing an ISR.

Low task switching latency:

• The time it takes from when a thread becomes available to when actual 
execution begins.

Small memory footprint:

• Memory resources for both program and data are kept to a minimum by 
allowing all components to configure memory as needed.

Deterministic behavior: 

• Throughout all aspect of execution, the kernels performance must be 
predictable and bounded to meet real-time application requirements.

23



Some functionality that is typically included in the kernel of an OS is not included in 
the eCos kernel. 

•E.g. memory allocation is handled by a separate package. 

• Similarly, each device driver is a separate package.

24



The eCos I/O system is a framework for supporting device drivers.

A variety of drivers for a variety of platforms are provided in the eCos configuration 
package. 

• These include drivers for serial devices, Ethernet, flash memory interfaces, 
and various I/O interconnects such as PCI (peripheral component 
interconnect) and USB (universal serial bus). 

•In addition, users can develop their own device drivers.

The principal objective for the I/O system is efficiency, with no unnecessary software 
layering or extraneous functionality. 

Device drivers provide the necessary functions for input, output, buffering, and 
device control.

Device drivers and other higher-layer software may be implemented directly on the 
HAL if this is appropriate. 

• If specialized kernel type functions are needed, then the device driver is 
implemented using kernel APIs.

25



The eCos kernel can be configured to provide one of two scheduler designs: 

• the bitmap scheduler and 

• a multilevel queue scheduler.

The bitmap scheduler provides efficient scheduling for a system with a small number 
of threads that may be active at any point in time.

The multiqueue scheduler is appropriate if the number of threads is dynamic or if it is 
desirable to have multiple threads at the same priority level. 

•The multilevel scheduler is also needed if time slicing is desired.

26



A bitmap scheduler supports multiple priority levels, but only one thread can exist at 
each priority level at any given time. 

Scheduling decisions are quite simple with this scheduler.

When a blocked thread become ready to run, it may preempt a thread of lower 
priority.

When a running thread suspends, the ready thread with the highest priority is 
dispatched.

A thread can besuspended because it is blocked on a synchronization primitive, 
because it is interrupted, or because it relinquishes control. 

Because there is only one thread, at most, at each priority level, the scheduler does 
not have to make a decision as to which thread at a given priority level should be 
dispatched next.

The bitmap scheduler is configured with 8, 16, or 32 priority levels. 

• A simple bitmap is kept of the threads that are ready to execute.

• The scheduler need only determine the position of the most significant one 
bit in the bitmap to make a scheduling decision.

27



The multilevel queue scheduler supports up to 32 priority levels. 

• The multilevel queue scheduler allows for multiple active threads at each priority level, 
limited only by system resources.

This Figure illustrates the nature of the multilevel queue scheduler.

• A data structure represents the number of ready threads at each priority level.

• When a blocked thread become ready to run, it may preempt a thread of lower priority.

As with the bitmap scheduler, a running thread may be blocked on a synchronization primitive, 
because it is interrupted, or because it relinquishes control.

When a thread is blocked, the scheduler must first determine if one or more threads at the same 
priority level as the blocked thread is ready. 

• If so, the scheduler chooses the one at the front of the queue. 

• Otherwise, the scheduler looks for the next highest priority level with one or more ready 
threads and dispatches one of these threads.

In addition, the multilevel queue scheduler can be configured for time slicing.

If a thread is running and there is one or more ready threads at the same priority level, the scheduler 
will suspend the running thread after one time slice and choose the next thread in the queue at that 
priority level.

• This is a round-robin policy within one priority level. 

• Not all applications require time slicing. 

28



The eCos kernel can be configured to include one or more of six different thread 
synchronization mechanisms. 

These include the classic synchronization mechanisms:

• mutexes, 

• semaphores, and 

•condition variables. 

In addition, eCos supports two synchronization/communication mechanisms that are 
common in real-time systems, namely 

• event flags and 

• mailboxes. 

Finally, the eCos kernel supports spinlocks, which are useful in SMP (symmetric 
multiprocessing) systems.

29



Mutex is used to enforce mutually exclusive access to a resource, allowing only one 
thread at a time to gain access. 

The mutex has only two states: 

• locked and

• unlocked. 

Similar to a binary semaphore: 

• When a mutex is locked by one thread, any other thread attempting to lock 
the mutex is blocked;

• when the mutex is unlocked, then one of the threads blocked on this mutex
is unblocked and allowed to lock the mutex and gain access to the resource.

The mutex differs from a binary semaphore in two respects. 

• the thread that locks the mutex must be the one to unlock it. 

•But t is possible for one thread to lock a binary semaphore and for another to 
unlock it.

• The other difference is that a mutex provides protection against priority 
inversion, whereas a semaphore does not.

The eCos kernel can be configured to support either a priority inheritance protocol or 
a priority ceiling protocol.

30



A condition variable is used to block a thread until a particular condition is true. 

Condition variables are used with mutexes to allow multiple thread to access shared 
data. 

In eCos, condition variables are typically used in conjunction with mutexes to 
implement long-term waits for some condition to become true.

31



32



33



TinyOS takes the process of streamlining to a much further point, resulting in a very minimal 
OS for embedded systems. 

The core OS requires 400 bytes of code and data memory, combined.

TinyOS represents a significant departure from other embedded operating systems.

• TinyOS is not a real-time OS.

• The reason for this is the expected workload, which is in the context of a wireless 
sensor network.

Because of power consumption, these devices are off most of the time.

• Applications tend to be simple, with processor contention not much of an issue.

In TinyOS there is no kernel, as there is no memory protection and it is a component-based 
OS;

• There are no processes; 

• The OS itself does not have a memory allocation system 

• interrupt and exception handling is dependent on the peripheral; and

• it is completely nonblocking, so there are few explicit synchronization primitives.

34



TinyOS was developed primarily for use with networks of small wireless sensors.

A number of trends have enabled the development of extremely compact, low-power 
sensors.

Low cost, small size, low-power-consuming wireless sensors make can be used in a 
host of application. 

This figure shows a typical configuration.

35



With the tiny, distributed sensor application in mind, the following goals were set for TinyOS:

Allow high concurrency: 

• In a typical wireless sensor network application, the devices are concurrency intensive. 

• Several different flows of data must be kept moving simultaneously. 

• While sensor data is input in a steady stream, processed results must be transmitted in a steady stream. 

• Also, external controls from remote sensors or base stations must be managed.

Operate with limited resources:

• Target platform has limited memory and computational resources and run on batteries or solar power.

• A single platform may offer only kilobytes of program memory and hundreds of bytes of RAM. 

• The software must make efficient use of the available processor and memory resources while enabling low-power communication.

Adapt to hardware evolution:

• hardware is in constant evolution; applications and most system services must be portable across hardware generations. 

• It should be possible to upgrade the hardware with little or no software change, if the functionality is the same.

Support a wide range of applications: 

• Applications exhibit a wide range of requirements in terms of lifetime, communication, sensing, and so on.

• A modular, general-purpose embedded OS is desired so that a standardized approach leads to economies of scale in developing 
applications and support software.

Support a diverse set of platforms: 

• A general-purpose embedded OS is desirable.

Be robust: 

• Once deployed, a sensor network must run unattended for months or years.

• Ideally, there should be redundancy both within a single system and across the network of sensors.

• However, both types of redundancy require additional resources.

• One software characteristic that can improve robustness is to use highly modular, standardized software components.

36



An embedded software system built using TinyOS consists of a set of small modules, 
called components, 

• each of which performs a simple task or set of tasks and which interface 
with each other and with hardware in limited and well-defined ways. 

37



All components in a TinyOS configuration have the same structure, an example of 
which is shown here.

The shaded box in the diagram indicates the component, which is treated as an 
object that can only be accessed by defined interfaces, indicated by white boxes. 

A component may be hardware or software.

38



Components are organized into configurations by “wiring” the together at their 
interfaces and equating the interfaces of the configuration with some of the 
interfaces of the components. 

A simple example is shown here

39



The TinyOS scheduler operates across all components.

• Virtually all embedded systems using TinyOS will be uniprocessor systems, so that 
only one task among all the tasks in all the components may execute at a time.

The scheduler is a separate component. 

• It is the one portion of TinyOS that must be present in any system.

The default scheduler in TinyOS is a simple FIFO (first-in-first-out) queue.

A task is posted to the scheduler (place in the queue) either as a result of an event, which 
triggers the posting, or as a result of a specific request by a running task to schedule another 
task.

The scheduler is power aware.

• This means that the scheduler puts the processor to sleep when there are no tasks 
in the queue. 

The peripherals remain operating, so that one of them can wake up the system by means of a 
hardware event signaled to a lowest-level component. 

• Once the queue is empty, another task can be scheduled only as a result of a direct 
hardware event.

• This behavior enables efficient battery usage

40



This figure shows a configuration assembled from software and hardware 
components.

This simplified example, called Surge performs periodic sensor sampling and uses ad-
hoc multihop routing over the wireless network

to deliver samples to the base station.

41



This figure shows a portion of the configuration for the Surge application.

42



TinyOS provides a simple but powerful set of conventions for dealing with resources.

Dedicated: 

• A resource that a subsystem needs exclusive access to at all times.

•In this class of resources, no sharing policy is needed since only a single component 
ever requires use of the resource. 

• Examples of dedicated abstractions include interrupts and counters.

Virtualized: 

• Every client of a virtualized resource interacts with it as if it were a dedicated 
resource, with all virtualized instances being multiplexed on top of a single 
underlying resource.

• The virtualized abstraction may be used when the underlying resource need not be 
protected by mutual exclusion.

• An example is a clock or timer.

Shared: 

• The shared resource abstraction provides access to a dedicated resource through 
an arbiter component.

• The arbiter enforces mutual exclusion, allowing only one user (called a client) at a 
time to have access to a resource and enabling the client to lock the resource.

43



This figure shows a simplified view of the shared resource configuration used to 
provide access to an underlying resource. 

Associated with each resource to be shared is an arbiter component. 

• The arbiter enforces a policy that enables a client to lock the resource, use it 
and then release the resource.`

44


