
These slides are intended to help a teacher develop a presentation. This powerpoint
covers the entire chapter and includes too many slides for a single delivery. Professors
are encouraged to adapt this presentation in ways which are best suited for their
students and environment.

1

Overview of points covered in this chapter

Point out that memory partitioning isn’t used much except for special cases such as
kernel memory management

2

Introduce by pointing out that in a uniprogramming system, main memory is divided
into two parts:

•one part for the operating system (resident monitor, kernel) and

• one part for the program currently being executed.

In a multiprogramming system, the “user” part of memory must be further
subdivided to accommodate multiple processes.

Emphasise that memory management is vital in a multiprogramming system. If only a
few processes are in memory, then for much of the time all of the processes will be
waiting

for I/O and the processor will be idle.

Thus memory needs to be allocated to ensure a reasonable supply of ready processes
to consume available processor time.

3

4

The following slides expand on these topics.

5

6

7

This figure depicts a process image. Talk the students through this diagram

Assume that the process image occupies a contiguous region of main memory.

The OS needs to know the location of:

• process control information

• the execution stack,

• the entry point to begin execution of the program for this process.

Because the operating system knows this information because it is managing memory
and is responsible for bringing this process into main memory. However, the
processor must deal with memory references within the program. Branch instructions
contain an address to reference the instruction to be executed next. Data reference
instructions contain the address of the byte or word of data referenced. Somehow,
the processor hardware and operating system software must be able to translate the
memory references found in the code of the program into actual physical memory
addresses, reflecting the current location of the program in main memory.

8

Normally, a user process cannot access any portion of the operating system, neither
program nor data.

Usually a program in one process cannot branch to an instruction in another process
or access the data area of another process. The processor must be able to abort such
instructions at the point of execution.

Note that the memory protection requirement must be satisfied by the processor
(hardware) rather than the operating system (software) because the OS cannot
anticipate all of the memory references that a program will make. It is only possible
to assess the permissibility of a memory reference at the time of execution.

Consider asking the students “why” to point 1 & 2.

Why is it a Bad Thing for one process to be able to read, or even write, to memory
occupied by a different process?

Why is it impossible to check absolute addresses at compile time (hint: see
relocation)

9

Any protection mechanism must have the flexibility to allow several processes to
access the same portion of main memory.

Processes that are cooperating on some task may need to share access to the same
data structure.

10

Main memory is usually organized as a linear, or one-dimensional, address space,
consisting of a sequence of bytes or words.

Secondary memory, at its physical level, is similarly organized.

This does not correspond to the way in which programs are typically constructed.
Most programs are organized into modules. If the operating system and computer
hardware can effectively deal with user programs and data in the form of modules of
some sort, then a number of advantages can be realized

11

Because of this, it is clear that the task of moving information between the two levels
of memory should be a system responsibility. This task is the essence of memory
management.

12

13

Don’t dwell on this slide – it is just an indication on the various approaches which will
be covered in further detail in other slides

14

15

16

17

18

19

Finish by mentioning tat fixed partitioning is almost unknown today

20

21

Animated slide

Imagine a system with 64M RAM

1. Initially, main memory is empty, except for the operating system

2. Three processes are loaded in – leaving a ‘hole’ too small for any further process

3. At some point, none of the processes in memory is ready. The operating system
swaps out process 2,

4. Which leaves sufficient room to load a new process, process 4 – but that creates
another hole

5. Later, a point is reached at which none of the processes in main memory is ready,
but process 2, in the Ready-Suspend state, is available. Because there is
insufficient room in memory for process 2, the operating system swaps process 1
out and swaps process 2 back in leaving yet another hole

6. Explain External Fragmentation and compaction – mention that compaction
implies the capability of dynamic relocation

22

23

24

25

Slide shows Fig 7.5 - an example memory configuration after a number of placement
and swapping-out operations.

•The last block that was used was a 22-Mbyte block from which a 14-Mbyte partition
was created.

•Figure 7.5b shows the difference between the best, first, and next-fit placement
algorithms in satisfying a 16-Mbyte allocation request.

•Best-fit will search the entire list of available blocks and make use of the 18-Mbyte
block, leaving a 2-Mbyte fragment.

•First-fit results in a 6-Mbyte fragment, and

•Next-fit results in a 20-Mbyte fragment.

26

In a fixed partitioning scheme limits the number of active processes and may use
space inefficiently if there is a poor match between available partition sizes and
process sizes.

A dynamic partitioning scheme is more complex to maintain and includes the
overhead of compaction.

An interesting compromise is the buddy system.

27

Figure 7.6 gives an example using a 1-Mbyte initial block.

The first request,A, is for 100 Kbytes, for which a 128K block is needed.

•The initial block is divided into two 512K buddies.

•The first of these is divided into two 256K buddies,

•and the first of these is divided into two 128K buddies,

• one of which is allocated to A.

•The next request,B, requires a 256K block. Such a block is already available and is
allocated.

•The process continues with splitting and coalescing occurring as needed.

•Note that when E is released,two 128K buddies are coalesced into a 256K block,
which is immediately coalesced with its buddy

28

Figure 7.7 shows a binary tree representation of the buddy allocation immediately
after the Release B request.

The leaf nodes represent the current partitioning the memory.

If two buddies are leaf nodes, then at least one must be allocated;

otherwise they would be coalesced into a larger block.

•The buddy system is a reasonable compromise to overcome the disadvantages of
both the fixed and variable partitioning schemes,

• But in contemporary operating systems, virtual memory based on paging and
segmentation is superior.

•However, the buddy system has found application in parallel systems as an efficient
means of allocation and release for parallel programs. A modified form of the buddy
system is used for UNIX kernel memory allocation (described in Chapter 8).

29

30

A translation must be made from both Logical and Relative addresses to arrive at the
Absolute address

31

32

33

34

35

36

Animated slide

1. System with a number of frames allocated

2. Process A, stored on disk, consists of four pages. When it comes time to load this
process, the operating system finds four free frames and loads the four pages of
process A into the four frames.

3. Process B, consisting of three pages, and process C, consisting of four pages, are
subsequently loaded.

4. Then process B is suspended and is swapped out of main memory.

5. Later, all of the processes in main memory are blocked, and the operating system
needs to bring in a new process, process D, which consists of five pages. The
Operating System loads the pages into the available frames and updates the page
table

37

38

The difference with dynamic partitioning, is that with segmentation a program may
occupy more than one partition, and these partitions need not be contiguous.

Segmentation eliminates internal fragmentation but suffers from external
fragmentation (as does dynamic partitioning)

However, because a process is broken up into a number of smaller pieces, the
external fragmentation should be less.

A consequence of unequal-size segments is that there is no simple relationship
between logical addresses and physical addresses.

Analogous to paging, a simple segmentation scheme would make use of a segment
table for each process and a list of free blocks of main memory. Each segment table
entry would have to give

• the starting address in main memory of the corresponding segment.

•the length of the segment, to assure that invalid addresses are not used.

When a process enters the Running state, the address of its segment table is loaded
into a special register used by the memory management hardware.

39

In this example, 16-bit addresses are used, and the page size is 1K =1024 bytes.

The relative address 1502, in binary form, is 0000010111011110.

With a page size of 1K, an offset field of 10 bits is needed, leaving 6 bits for the page number.

Thus a program can consist of a maximum of 26 =64 pages of 1K bytes each.

As Figure 7.11b shows, relative address 1502 corresponds to

•an offset of 478 (0111011110) on page 1 (000001),

•which yields the same 16-bit number, 0000010111011110.

Consider an address of n + m bits, where the leftmost n bits are the segment number and the rightmost m bits

are the offset.

In the example on the slide

•n = 4 and

•m =12.

Thus the maximum segment size is 212 = 4096.

The following steps are needed for address translation:

• Extract the segment number as the leftmost n bits of the logical address.

• Use the segment number as an index into the process segment table to find the starting physical address of the
segment.

Compare the offset, expressed in the rightmost m bits, to the length of the segment. If the offset is greater than or equal to the
length, the address is invalid.

The desired physical address is the sum of the starting physical address of the segment plus the offset.

40

In our example, we have the logical address 0000010111011110,

which is page number 1, offset 478.

Suppose that this page is residing in main memory frame 6 = binary 000110.

Then the physical address is frame number 6, offset 478 = 0001100111011110

41

In our example, we have the logical address 0001001011110000, which is segment
number 1, offset 752.

Suppose that this segment is residing in main memory starting at physical address
0010000000100000.

Then the physical address is 0010000000100000 + 001011110000 =
0010001100010000

42

