
These slides are intended to help a teacher develop a presentation. This PowerPoint 
covers the entire chapter and includes too many slides for a single delivery. Professors 
are encouraged to adapt this presentation in ways which are best suited for their 
students and environment.
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The central themes of operating system design are all concerned with the 
management of processes and threads:

• Multiprogramming: 

The management of multiple processes within a uniprocessor system.

• Multiprocessing: 

The management of multiple processes within a multiprocessor.

• Distributed processing: 

The management of multiple processes executing on multiple, 
distributed computer systems.

E. G clusters

Concurrency encompasses a host of design issues, including 

• communication among processes, 

• sharing of and competing for resources (such as memory, files, and I/O 
access),

• synchronization of the activities of multiple processes, and 

• allocation of processor time to processes.
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• Multiple applications: 

Multiprogramming was invented to allow processing time to be dynamically 
shared among a number of active applications.

• Structured applications: 

As an extension of the principles of modular design and structured 
programming, some applications can be effectively programmed as a set of 
concurrent processes.

• Operating system structure:

The same structuring advantages apply to systems programs, and we have 
seen that operating systems are themselves often implemented as a set of 
processes or threads.
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These terms will be explained throughout this chapter – do not labor this table.

It may be best skipped over and given as a reference point for students.
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The sharing of global resources 

If two processes both make use of the same global variable 

and both perform reads and writes on that variable, 

then the order in which the various reads and writes are executed is 
critical. 

Managing Resources

•It is difficult for the OS to manage the allocation of resources optimally. 

•E.G.  A process may request use of, and be granted control of, a particular I/O 
channel and then be suspended before using that channel. 

-It may be undesirable for the OS simply to lock the channel and 
prevent its use by other processes; 

- indeed this may lead to a deadlock condition, 

Locating Programming Errors 

It becomes very difficult to locate a programming error because results are 
typically not deterministic and reproducible
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A program that will provide a character echo procedure; 

• input is obtained from a keyboard one keystroke at a time.

• Each input character is stored in variable chin. 

• It is then transferred to variable chout 

• and finally sent to the display. 

Any program can call this procedure repeatedly to accept user input and display it on 
the user’s screen.

Now consider that we have a single-processor multiprogramming system supporting 
a single user. 

• The user can jump from one application to another, and each application 
uses the same keyboard for input and the same screen for output. 

Each application needs to use the procedure echo, 

• So it makes sense for it to be a shared procedure that is loaded into a 
portion of memory global to all applications.

• Thus, only a single copy of the echo procedure is used, saving space.
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The result is that the character input to P1 is lost before being displayed,

and the character input to P2 is displayed by both P1 and P2.
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1. Processes P1 and P2 are both executing, each on a separate processor. 

• P1 invokes the echo procedure.

2. While P1 is inside the echo procedure, P2 invokes echo. 

• Because P1 is still inside the echo procedure (whether P1 is suspended or 
executing), P2 is blocked from entering the procedure. 

• Therefore, P2 is suspended awaiting the availability of the echo procedure.

3. At a later time, process P1 completes execution of echo, exits that procedure, and 
continues executing. 

• Immediately upon the exit of P1 from echo, P2 is resumed and begins 
executing echo.
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We can classify the ways in which processes interact on the basis of the degree to which they 
are aware of each other’s existence.

This table (continues on the next slide) lists three possible degrees of awareness plus the 
consequences of each.

Introduce each degree of awareness briefly – mention that things are often as clear cut as in 
this table.

Processes unaware of each other: 

• Independent processes that are not intended to work together.

• E.G. multiprogramming of multiple independent processes.

• Although the processes are not working together, the OS needs to be concerned 
about competition for resources.

• E.G. two independent applications may both want to access the same disk or file or 
printer.

Processes indirectly aware of each other: 

• Processes that are not necessarily aware of each other by their respective process 
IDs but that share access to some object, such as an I/O buffer. 

• Such processes exhibit cooperation in sharing the common object.

Processes directly aware of each other: 

• Processes that are able to communicate with each other by process ID and that are 
designed to work jointly on some activity. 

• Again, such processes exhibit cooperation.

14



Need for mutual exclusion. 

•Suppose two or more processes require access to a single nonsharable resource, 
such as a printer. 

• During the course of execution, each process will be sending commands to the I/O 
device, receiving status information, sending data, and/or receiving data.

• We will refer to such a resource as a critical resource, and the portion of 
the program that uses it a critical section of the program. 

• It is important that only one program at a time be allowed in its critical section.

• We cannot simply rely on the OS to understand and enforce this restriction because 
the detailed requirements may not be obvious. 

• In the case  of the printer, for example, we want any individual process to have 
control of the printer while it prints an entire file. 

•Otherwise, lines from competing processes will be interleaved.

The enforcement of mutual exclusion creates two additional control problems:

deadlock.

• Two processes is waiting for the same resources (or each waiting for a resource that 
the other has exclusive use to)

• Neither will release the resource that it already owns until it has acquired the other 
resource and performed the function requiring both resources. 

• The two processes are deadlocked.

starvation.

• The OS may grant access to resources to a number of processes while neglecting 
another
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In a uniprocessor system, concurrent processes cannot have overlapped execution;

they can only be interleaved.

To guarantee mutual exclusion, it is sufficient to prevent a process from being 
interrupted.
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Because the critical section cannot be interrupted, mutual exclusion is guaranteed.

The price of this approach, however, is high. 

The efficiency of execution could be noticeably degraded because the 
processor is limited in its ability to interleave processes.
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More details on these approaches in the following slides
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This version of the instruction checks a memory location (*word) against a test value 
(testval). 

If the memory location’s current value is testval, it is replaced with newval; 

otherwise it is left unchanged. 

The old memory value is always returned; 

thus, the memory location has been updated if the returned value is the same 
as the test value.

1) A compare is made between a memory value and a test value; 

2) if the values differ a swap occurs.

The entire compare&swap function is carried out atomically; 

Ie  it is not subject

to interruption.
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This shows a mutual exclusion protocol based on the use of this instruction.

A shared variable bolt is initialized to 0. 

The only process that may enter its critical section is one that finds bolt equal 
to 0. 

All other processes that enter their critical section go into a busy waiting mode.
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The instruction exchanges the contents of a register with that of a memory location.

Both the Intel IA-32 architecture (Pentium) and the IA-64 architecture (Itanium) 
contain an XCHG instruction.
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This shows a mutual exclusion protocol based on the use of an exchange instruction. 

A shared variable bolt is initialized to 0. 

•Each process uses a local variable key that is initialized to 1.

•The only process that may enter its critical section is one that finds bolt equal 
to 0. 

•It excludes all other processes from the critical section by setting bolt to 1.

•When a process leaves its critical section, it resets bolt to 0, allowing another 
process to gain access to its critical section.
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Busy waiting 

While a process is waiting for access to a critical section, it continues to 
consume processor time.

Starvation is possible. 

When a process leaves a critical section and more than one process is waiting, 
the selection of a waiting process is arbitrary. 

Thus, some process could indefinitely be denied access.

Deadlock is possible. 

Example (on a uniprocessor).

• Process P1 executes the special instruction (e.g., compare&swap, exchange) 
and enters its critical section. 

• P1 is then interrupted to give the processor to P2, which has higher priority. 

• If P2 now attempts to use the same resource as P1, it will be denied access 
because of the mutual exclusion mechanism. 

• Thus it will go into a busy waiting loop. 

•However, P1 will never be dispatched because it is of lower priority than 
another ready process, P2.
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1. A semaphore may be initialized to a nonnegative integer value.

2. The semWait operation decrements the semaphore value. 

•If the value becomes negative, then the process executing the semWait is 
blocked. 

• Otherwise, the process continues execution.

3. The semSignal operation increments the semaphore value. 

• If the resulting value is less than or equal to zero, then a process blocked by 
a semWait operation, if any, is unblocked.
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An example of a semaphore
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A more restrictive semaphore which may only have the value of 0 or 1

A similar concept related to the binary semaphore is the mutex.

• A key difference between the two is that the process that locks the mutex 
(sets the value to zero) must be the one to unlock it (sets the value to 1). 

• In contrast, it is possible for one process to lock a binary semaphore and for 
another to unlock it.
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For both counting semaphores and binary semaphores, a queue is used to hold 
processes waiting on the semaphore. 

The question arises of the order in which processes are removed from such a queue. 

The fairest removal policy is first-in-first-out (FIFO):

•The process that has been blocked the longest is released from the queue 
first; a semaphore whose definition includes this policy is called a strong 
semaphore. 

•A semaphore that does not specify the order in which processes are removed 
from the queue is a weak semaphore.
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Animated Slide – animation shows sections of the diagram to focus and remove 
distraction

Processes A, B, and C depend on a result from process D. 

Initially (1), A is running;

• B, C, and D are ready; 

• the semaphore count is 1, indicating that one of D’s results is available.

• When A issues a semWait instruction on semaphore s, the semaphore 
decrements to 0, and A can continue to execute; 

• subsequently it rejoins the ready queue.

Then B runs (2), eventually issues a semWait instruction, and is blocked, 

allowing D to run (3).

When D completes a new result, it issues a semSignal instruction, 

which allows B to move to the ready queue (4). 

D rejoins the ready queue and …
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C begins to run (5) 

•but is blocked when it issues a semWait instruction. 

•Similarly, A and B run and are blocked on the semaphore, 

allowing D to resume execution (6).When D has a result, it issues a semSignal, which 
transfers C to the ready queue. Later cycles of D will release A and B from the Blocked 
state.
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This shows a straightforward solution to the mutual exclusion problem using a 
semaphore 

Consider n processes, identified in the array P(i), all of which need access to the same 
resource s. 

• Each process has a critical section used to access the resource. 

• In each process, a semWait(s) is executed just before its critical section. 

• If the value of s becomes negative, the process is blocked. 

• If the value is 1, then it is decremented to 0 and the process 
immediately enters its critical section; 

• because s is no longer positive, no other process will be able to enter its 
critical section.
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Figure 5.7, shows a possible sequence for three processes using the mutual exclusion 
discipline of Figure 5.6.

Three processes (A,B, C) access a shared resource protected by the semaphore lock. 

•Process-A executes semWait(lock); 

• because the semaphore has a value of 1 at the time of the semWait 
operation, A can immediately enter its critical section and the 
semaphore takes on the value 0.

•While A is in its critical section, both B and C perform a semWait operation 
and are blocked pending the availability of the semaphore. 

•When A exits its critical section and performs semSignal(lock), B, which was 
the first process in the queue, can now enter its critical section.
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The general statement is this: 

• There are one or more producers generating some type of data (records, 
characters) and placing these in a buffer.

• There is a single consumer that is taking items out of the buffer one at a 
time.

•The system is to be constrained to prevent the overlap of buffer operations. 
That is, only one agent (producer or consumer) may access the buffer at any 
one time.

The problem is to make sure that the producer won’t try to add data into the buffer if 
it’s full and that the consumer won’t try to remove data from an empty buffer.

We will look at a number of solutions to this problem to illustrate both the power and 
the pitfalls of semaphores.

37



38



The producer can generate items and store them in the buffer at its own pace. 

Each time, an index (in) into the buffer is incremented.

The consumer proceeds in a similar fashion but must make sure that it does not 
attempt to read from an empty buffer.

39



Rather than deal with the indices in and out, we can simply keep track of the number 
of items in the buffer, using the integer variable n (= in - out). 

The semaphore s is used to enforce mutual exclusion; 

the semaphore delay is used to force the consumer to semWait if the buffer is 
empty.
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There is, however, a flaw in this program.

When the consumer has exhausted the buffer, it needs to reset the delay semaphore 
so that it will be forced to wait until the producer has placed more items in the buffer. 

This is the purpose of the statement: if n == 0 semWaitB (delay). 

In line 14, the consumer fails to execute the semWaitB operation. 

The consumer did indeed exhaust the buffer and set n to 0 (line 8), 

but the producer has incremented n before the consumer can test it in line 14.

The result is a semSignalB not matched by a prior semWaitB. 

The value of -1 for n in line 20 means that the consumer has consumed an 
item from the buffer that does not exist. It would not do simply to move the 
conditional statement inside the critical section of the consumer because this 
could lead to deadlock (e.g., after line 8 of the table).
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A fix for the problem is to introduce an auxiliary variable that can be set in the 
consumer’s critical section for use later on.
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A somewhat cleaner solution can be obtained if general semaphores (also called 
counting semaphores) are used

The variable n is now a semaphore. 

Its value still is equal to the number of items in the buffer. 

Suppose now that in transcribing this program, a mistake is made and the operations 
semSignal(s) and semSignal(n) are interchanged.

This would require that the semSignal(n) operation be performed in the 
producer’s critical section without interruption by the consumer or another 
producer.

Would this affect the program?

No, because the consumer must wait on both semaphores before proceeding 
in any case.
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Finally, let us add a new and realistic restriction to the producer/consumer problem: 

namely, that the buffer is finite. 

The buffer is treated as a circular storage, and pointer values must be expressed 
modulo the size of the buffer.
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Introduction to the Animations http://williamstallings.com/OS/Animations-intro.html
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The chief characteristics of a monitor are the following:

1. The local data variables are accessible only by the monitor’s procedures and not by 
any external procedure.

2. A process enters the monitor by invoking one of its procedures.

3. Only one process may be executing in the monitor at a time; any other processes 
that have invoked the monitor are blocked, waiting for the monitor to become 
available.
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A monitor supports synchronization by the use of condition variables that are

contained within the monitor and accessible only within the monitor.

cwait(c): Suspend execution of the calling process on condition c.

The monitor is now available for use by another process.

csignal(c): Resume execution of some process blocked after a cwait on the same 
condition. 

If there are several such processes, choose one of them; if there is no such 
process, do nothing.
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Although a process can enter the monitor by invoking any of its procedures, we can 
think of the monitor as having a single entry point that is guarded so that only one 
process may be in the monitor at a time. 

•Other processes that attempt to enter the monitor join a queue of processes 
blocked waiting for monitor availability. 

Once a process is in the monitor, it may temporarily block itself on condition x by 
issuing cwait(x); 

• it is then placed in a queue of processes waiting to re-enter the monitor 
when the condition changes, and resume execution at the point in its program 
following the cwait(x) call.

If a process that is executing in the monitor detects a change in the condition variable 
x, it issues csignal(x), 

which alerts the corresponding condition queue that the condition has 
changed.
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Returning to the bounded-buffer producer/consumer problem – this is a solution 
using a monitor.

The module, boundedbuffer, controls the buffer used to store and retrieve characters. 

The monitor includes two condition variables (declared with the construct cond): 

• notfull is true when there is room to add at least one character to the buffer, 

• and notempty is true when there is at least one character in the buffer.

This example points out the division of responsibility with monitors compared to 
semaphores. 

In the case of monitors, the monitor construct itself enforces mutual exclusion:

• It is not possible for both a producer and a consumer simultaneously to 
access the buffer. 

• However, the programmer must place the appropriate cwait and csignal
primitives inside the monitor to prevent processes from depositing items in a 
full buffer or removing them from an empty one. 

In the case of semaphores, both mutual exclusion and synchronization are the 
responsibility of the programmer.
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Note here that a process exits the monitor immediately after executing the csignal 
function.

One language, ConcurrentPascal,  insists that nothing follows a csignal call
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Lampson and Redell developed an approach known as MESA 

When a process executing in a monitor executes cnotify(x), 

it causes the x condition queue to be notified, but the signalling process 
continues to execute.

The result of the notification is that the process at the head of the condition queue 
will be resumed at some convenient future time when the monitor is available. 

However, because there is no guarantee that some other process will not 
enter the monitor before the waiting process, the waiting process must 
recheck the condition. 

E.G. the procedures in the boundedbuffer monitor would now have the code in this 
slide
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When processes interact with one another, two fundamental requirements must be 
satisfied: 

• synchronization and 

• communication. 

Processes need to be synchronized to enforce mutual exclusion; 

cooperating processes may need to exchange information.

One approach to providing both of these functions is message passing. 

Message passing has the further advantage that it lends itself to implementation in 
distributed systems as well as in shared-memory  multiprocessor and uniprocessor 
systems.
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Emphasize that message-passing systems come in many forms. We provide a general 
introduction that discusses features typically found in such systems.

These primitives are a minimum set of operations needed for processes to engage in 
message passing. 

• A process sends information in the form of a message to another process 
designated by a destination.

• A process receives information by executing the receive primitive, indicating 
the source and the message.

58



The communication of a message between two processes implies some level of 
synchronization between the two: the receiver cannot receive a message until it has 
been sent by another process. 

When a send primitive is executed in a process, there are two possibilities: 

• Either the sending process is blocked until the message is received, 

•or it is not. 

Similarly, when a process issues a receive primitive, there are two possibilities:

• If a message has previously been sent, the message is received and 
execution continues.

• If there is no waiting message, then either 

(a) the process is blocked until a message arrives, or 

(b) the process continues to execute, abandoning the attempt to 
receive.
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Both the sender and receiver are blocked until the message is delivered; 

this is sometimes referred to as a rendezvous.

This combination allows for tight synchronization between processes.

60



Nonblocking send, blocking receive: 

Although the sender may continue on, the receiver is blocked until the requested 
message arrives.

This is probably the most useful combination. 

•It allows a process to send one or more messages to a variety of destinations 
as quickly as possible. 

•A process that must receive a message before it can do useful work needs to 
be blocked until such a message arrives. 

• Nonblocking send, nonblocking receive:

• Neither party is required to wait.
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it is necessary to have a way of specifying in the send primitive which process is to 
receive the message. 

Similarly, most implementations allow a receiving process to indicate the source of a 
message to be received.
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A strength of the use of indirect addressing is that, by decoupling the sender and 
receiver, it allows for greater flexibility in the use of messages.
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Animated Slide – each item below is magnified for instructor to address separately

1) A one-to-one relationship 

• allows a private communications link to be set up between two processes. 

•This insulates their interaction from erroneous interference from other processes.

2) A many-to-one relationship is useful for client/server interaction;

• one process provides service to a number of other processes. 

• In this case, the mailbox is often referred to as a port.

3) A one-to-many relationship allows for one sender and multiple receivers; 

• it is useful for applications where a message or some information is to be broadcast 
to a set of processes.

4) A many-to-many relationship 

•allows multiple server processes to provide concurrent service to multiple clients.

The association of processes to mailboxes can be either static or dynamic. 

Ports are often statically associated with a particular process; that is, the port is created and 
assigned to the process permanently.

Similarly, a one-to-one relationship  is typically defined statically and permanently. 
When there are many senders, the association of a sender to a mailbox may occur 
dynamically. Primitives such as connect and disconnect may be used for this purpose
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The format of the message depends on the objectives of the messaging facility and 
whether the facility runs on a single computer or on a distributed system.

This is a typical message format for operating systems that support variable-length 
messages.

The message is divided into two parts: 

a header, which contains information about the message. 

• The header may contain an identification of the source and intended 
destination of the message, a length field, and a type field to 
discriminate among various types of messages.

•additional control information, e.g. pointer field so a linked list of 
messages can be created; a sequence number, to keep track of the 
number and order of messages passed between source and 
destination; and a priority field.

a body, which contains the actual contents of the message.
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This is one way in which message passing can be used to enforce mutual exclusion.

We assume the use of the blocking receive primitive and the non-blocking send 
primitive.

This assumes that if more than one process performs the receive operation 
concurrently, then

• If there is a message, it is delivered to only one process and the others are 
blocked, or

• If the message queue is empty, all processes are blocked; when a message is 
available, only one blocked process is activated and given the message.

67



This is an example of the use of message passing to the bounded-buffer 
producer/consumer problem.

This program takes advantage of the ability of message passing to be used to pass 
data in addition to signals.

Two mailboxes are used. 

As the producer generates data, it is sent as messages to the mailbox 
mayconsume. 

As long as there is at least one message in that mailbox, the consumer can 
consume. 

Hence mayconsume serves as the buffer; the data in the buffer are organized as a 
queue of messages.

The “size” of the buffer is determined by the global variable capacity. Initially, the 
mailbox mayproduce is filled with a

number of null messages equal to the capacity of the buffer. The number of messages 
in mayproduce shrinks with each production and grows with each consumption.
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The readers/writers problem is:

•There is a data area shared among a number of processes.

•The data area could be a file, a block of main memory,or even a bank of processor registers. 

•There are a number of processes that only read the data area (readers) and a number that only write to the data 
area (writers).

The conditions that must be satisfied are as follows:

1. Any number of readers may simultaneously read the file.

2. Only one writer at a time may write to the file.

3. If a writer is writing to the file, no reader may read it.
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This solution uses semaphores, showing one instance each of a reader and a writer; 
the solution does not change for multiple readers and writers. 

Once a single reader has begun to access the data area, it is possible for readers to 
retain control of the data area as long as there is at least one reader in the act of 
reading.

Therefore, writers are subject to starvation.
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This solution guarantees that no new readers are allowed access to the data area 
once at least one writer has declared a desire to write.

Continued on next slide
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This shows an alternative solution, which gives writers priority and which is 
implemented using message passing.
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