
These slides are intended to help a teacher develop a presentation. This PowerPoint 
covers the entire chapter and includes too many slides for a single delivery. Professors 
are encouraged to adapt this presentation in ways which are best suited for their 
students and environment.
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An operating system mediates among application programs, utilities, and users, on 
the one hand, and the computer system hardware on the other. 

To appreciate the functionality of the operating system and the design issues 
involved, one must have some appreciation for computer organization and 
architecture. 

This chapter provides a brief survey of the basic elements of a computer system
including

• the processor,

• memory, and 

• Input/Output (I/O)
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An operating system (OS) exploits the hardware resources of one or more processors 
to provide a set of services to system users. 

The OS also manages secondary memory and I/O (input/output) devices on behalf of 
its users. 

Accordingly, it is important to have some understanding of the underlying computer 
system hardware before we begin our examination of operating systems.

Many areas introduced in this chapter are covered in more depth later.
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At a top level, a computer consists of processor, memory, and I/O components, with 
one or more modules of each type. 

These components are interconnected in some fashion to achieve the main function 
of the computer, which is to execute programs.
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Controls the operation of the computer and performs its data processing functions.

When there is only one processor, it is often referred to as the central processing unit 
(CPU).

One of the processor’s functions is to exchange data with memory. 

For this purpose, it typically makes use of two internal (to the processor) registers: 

a memory address register (MAR), 

•Which specifies the address in memory for the next read or write; 

And a memory buffer register (MBR), 

•which contains the data to be written into memory or which receives the 
data read from memory. 
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Stores data and programs. 

• typically volatile;

• ie, when the computer is shut down, the contents of the memory are lost.

In contrast, the contents of disk memory are retained even when the computer 
system is shut down.

• Main memory is also referred to as real memory or primary memory.

A memory module consists of a set of locations, defined by sequentially numbered 
addresses. 

• Each location contains a bit pattern that can be interpreted as either an 
instruction or data.

•
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Move data between the computer and its external environment. The external 
environment consists of a variety of devices, 

• including secondary memory devices (e. g., disks), communications 
equipment, and terminals.

An I/O module transfers data from external devices to processor and memory, and 
vice versa. 

• It contains internal buffers for temporarily holding data until they can be 
sent on.

Similarly, an I/O address register (I/OAR) specifies a particular I/O device. 

• An I/O buffer register (I/OBR) is used for the exchange of data between an 
I/O module and the processor.
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Provides for communication among processors, main memory, and I/O modules.
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A processor includes a set of registers that provide memory that is faster and smaller 
than main memory. 

Processor registers serve two functions:

User-visible registers: Enable the machine or assembly language programmer to 
minimize main memory references by optimizing register use. 

• For high-level languages, an optimizing compiler will attempt to make 
intelligent choices of which variables to assign to registers and which to main 
memory locations. 

• Some high-level languages, such as C, allow the programmer to suggest to 
the compiler which variables should be held in registers.

Control and status registers: Used by the processor to control the operation of the 
processor and by privileged OS routines to control the execution of programs.

NOTE: There is not a clean separation of registers into these two categories. 

• For example, on some processors, the program counter is user visible, but 
on many it is not. 

• For purposes of the following discussion, however, it is convenient to use 
these categories.
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A user-visible register may be referenced by means of the machine language that the 
processor executes and is generally available to all programs, including application 
programs as well as system programs. 

Types of registers that are typically available are 

• data, 

• address, and 

• condition code registers
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Data registers can be assigned to a variety of functions by the programmer. 

• Usually they are general purpose in nature and can be used with any machine instruction that 
performs operations on data. 

• Often, however, there are restrictions. E.g. there may be dedicated registers for floating-point 
operations and others for integer operations.

Address registers contain:

• main memory addresses of data and instructions, 

• or they contain a portion of the address that is used in the calculation of the complete or effective 
address. 

These registers may themselves be general purpose, or may be devoted to a particular way, or mode, of 
addressing memory. 

Examples include:

Index register: Indexed addressing is a common mode of addressing that involves adding an index to a base value 
to get the effective address.

Segment pointer: With segmented addressing, memory is divided into segments, which are variable-length 
blocks of words.

• A memory reference consists of a reference to a particular segment and an offset within the segment. 

• In this mode of addressing, a register is used to hold the base address (starting location) of the 
segment. \

• There may be multiple registers; for example, one for the OS (i.e., when OS code is executing on the 
processor) and one for the currently executing application.

Stack pointer: If there is user-visible stack addressing, then there is a dedicated register that points to the top of 
the stack.

• This allows the use of instructions that contain no address field, such as push and pop.
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A variety of processor registers are employed to control the operation of the 
processor.

On most processors, most of these are not visible to the user. 

• Some of them may be accessible by machine instructions executed in what is 
referred to as a control or kernel mode.

Different processors will have different register organizations and use different 
terminology.

In addition to the MAR,MBR, I/OAR, and I/OBR the following are essential to 
instruction execution:

Program counter (PC): Contains the address of the next instruction to be fetched 

Instruction register (IR): Contains the instruction most recently fetched 

The program status word (PSW), contains status information.

• The PSW typically contains condition codes plus other status information, 
such as an interrupt enable/disable bit and a kernel/user mode bit.
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Bits typically set by the processor hardware as the result of operations.

For example, an arithmetic operation may produce a positive, negative, zero, or 
overflow result. 

• In addition to the result itself being stored in a register or memory, a 
condition code is also set following the execution of the arithmetic 
instruction.

• The condition code may subsequently be tested as part of a conditional 
branch operation.

• Condition code bits are collected into one or more registers. 

Usually, they form part of a control register. 

Generally, machine instructions allow these bits to be read by implicit reference, but 
they cannot be altered by explicit reference because they are intended for feedback 
regarding the results of instruction execution.
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A program to be executed by a processor consists of a set of instructions stored in 
memory. 

In its simplest form, instruction processing consists of two steps: 

• The processor reads (fetches) instructions from memory one at a time 

• and executes each instruction. 

Program execution consists of repeating the process of instruction fetch and 
instruction execution. 
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The two steps are referred to as the fetch stage and the execute stage. 

Instruction execution may involve several operations and depends on the nature of 
the instruction.

•The processing required for a single instruction is called an instruction cycle.

Program execution halts only if the processor is turned off, some sort of 
unrecoverable error occurs, or a program instruction that halts the processor is 
encountered.
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At the beginning of each instruction cycle, the processor fetches an instruction from 
memory.

Typically, the program counter (PC) holds the address of the next instruction to be 
fetched.

• Unless instructed otherwise, the processor always increments the PC after 
each instruction fetch so that it will fetch the next instruction in sequence 
(i.e., the instruction located at the next higher memory address). 
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The fetched instruction is loaded into the instruction register (IR). 

The instruction contains bits that specify the action the processor is to take.

Processor-memory: Data may be transferred from processor to memory or from 
memory to processor.

Processor-I/O: Data may be transferred to or from a peripheral device by transferring 
between the processor and an I/O module.

Data processing: The processor may perform some arithmetic or logic opera- tion on 
data.

Control: An instruction may specify that the sequence of execution be altered.
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Consider a simple example using a hypothetical processor 

The processor contains a single data register, called the accumulator (AC). 

Both instructions and data are 16 bits long, and memory is organized as a sequence 
of 16-bit words. 

• The instruction format provides 4 bits for the opcode, allowing as many as 24 

= 16 different opcodes

• represented by a single hexadecimal digit. 

The opcode defines the operation the processor is to perform.

With the remaining 12 bits of the instruction format, up to 212 = 4096 (4 K) words of 
memory can be directly addressed.

• denoted by three hexadecimal digits.
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This figure illustrates a partial program execution, showing the relevant portions of memory 
and processor registers. 

The program fragment shown adds the contents of the memory word at address 940 to the 
contents of the memory word at address 941 and stores the result in the latter location.

Three instructions, which can be described as three fetch and three execute stages, are 
required:
1. The PC contains 300, the address of the first instruction. 

• This instruction (the value 1940 in hexadecimal) is loaded into the IR and the PC 
is incremented.

• Note that this process involves the use of a memory address register (MAR) and a 
memory buffer register (MBR). 

• For simplicity, these intermediate registers are not shown.

2. The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be loaded from 
memory. 

• The remaining 12 bits (three hexadecimal digits) specify the address, which is 940.

3. The next instruction (5941) is fetched from location 301 and the PC is incremented.

4. The old contents of the AC and the contents of location 941 are added and the result is 
stored in the AC.

5. The next instruction (2941) is fetched from location 302 and the PC is incremented.

6. The contents of the AC are stored in location 941.
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Virtually all computers provide a mechanism by which other modules (I/O, memory) 
may interrupt the normal sequencing of the processor. 

Interrupts are provided primarily as a way to improve processor utilization.

•For example,most I/O devices are much slower than the processor.

Suppose that the processor is transferring data to a printer using the instruction cycle 
scheme described earlier. 

• After each write operation, the processor must pause and remain idle until 
the printer catches up. 

The length of this pause may be on the order of many thousands or even millions of 
instruction cycles.

• Clearly, this is a very wasteful use of the processor.
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Table 1.1 lists the most common classes of interrupts.
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NB: Animated slide showing each stage one at a time.

A) No Interrupts

Figure 1.5a illustrates this previous printer example.

• The user program performs a series of WRITE calls interleaved with processing. 

• The solid vertical lines represent segments of code in a program. 

• Code segments 1, 2, and 3 refer to sequences of instructions that do not involve I/O.

• The WRITE calls are to an I/O routine that is a system utility and that will perform the actual I/O operation. 

The I/O program consists of three sections:

• A sequence of instructions, labeled 4 in the figure, to prepare for the actual I/O operation.

• This may include copying the data to be output into a special buffer and preparing the parameters for a 
device command.

• The actual I/O command.

• Without the use of interrupts, once this command is issued, the program must wait for the I/O device to 
perform the requested function (or periodically check the status, or poll, the I/O device).

• The program might wait by simply repeatedly performing a test operation to determine if the I/O 
operation is done.

• A sequence of instructions, labeled 5 in the figure, to complete the operation.

• This may include setting a flag indicating the success or failure of the operation.

The dashed line represents the path of execution followed by the processor; 

• i.e. , this line shows the sequence in which instructions are executed.

• Thus, after the first WRITE instruction is encountered, the user program is interrupted and execution continues 
with the I/O program.

• After the I/O program execution is complete, execution resumes in the user program immediately following the 
WRITE instruction.

Because the I/O operation may take a relatively long time to complete, the I/O program is hung up waiting for the operation to 
complete; 

• hence, the user program is stopped at the point of the WRITE call for some considerable period of time.
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With interrupts, the processor can be engaged in executing other instructions while an I/O 
operation is in progress. 

As before, the user program reaches a point at which it makes a system call in the form of a 
WRITE call. 

• The I/O program that is invoked in this case consists only of the preparation code 
and the actual I/O command.

• After these few instructions have been executed, control returns to the user 
program.

• Meanwhile, the external device is busy accepting data from computer memory and 
printing it.

This I/O operation is conducted concurrently with the execution of instructions in the user 
program.

• When the external device becomes ready to be serviced, that is, when it is ready to 
accept more data from the processor, the I/O module for that external device sends 
an interrupt request signal to the processor. 

• The processor responds by suspending operation of the current program; branching 
off to a routine to service that particular I/O device, known as an interrupt handler; 
and resuming the original execution after the device is serviced.

The points at which such interrupts occur are indicated by X in Figure 1.5b. 

•Note that an interrupt can occur at any point in the main program, not just at one 
specific instruction.
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For the user program, an interrupt suspends the normal sequence of execution.

• When the interrupt processing is completed, execution resumes. 

• Thus, the user program does not have to contain any special code to 
accommodate interrupts; 

• the processor and the OS are responsible for suspending the user program 
and then resuming it at the same point.
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To accommodate interrupts, an interrupt stage is added to the instruction cycle, as 
shown here (compare Figure 1.2 earlier). 

In the interrupt stage, the processor checks to see if any interrupts have occurred, 
indicated by the presence of an interrupt signal. 

• If no interrupts are pending, the processor proceeds to the fetch stage and 
fetches the next instruction of the current program. 

• If an interrupt is pending, the processor suspends execution of the current 
program and executes an interrupt-handler routine. 

The interrupt-handler routine is generally part of the OS. 

•Typically, this routine determines the nature of the interrupt and performs 
whatever actions are needed.

In the example we have been using, the handler determines which I/O module 
generated the interrupt and may branch to a program that will write more data out to 
that I/O module.

• When the interrupt-handler routine is completed, the processor can resume 
execution of the user program at the point of interruption.
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To appreciate the gain in efficiency, consider Figure 1.8, which is a timing diagram 
based on the flow of control in Figures 1.5 a and 1.5b. 

Figures 1.5b and 1.8 assume that the time required for the I/O operation is relatively 
short: 

• less than the time to complete the execution of instructions between write 
operations in the user program.

The more typical case, especially for a slow device such as a printer, is that the I/O 
operation will take much more time than executing a sequence of user instructions. 
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Figure 1.5 c indicates a more typical state of affairs. 

In this case, the user program reaches the second WRITE call before the I/O operation 
spawned by the first call is

complete.

• The result is that the user program is hung up at that point.

When the preceding I/O operation is completed, this new WRITE call may be 
processed, and a new I/O operation may be started. 

Figure 1.9 shows the timing for this situation with and without the use of interrupts.

• We can see that there is still a gain in efficiency because part of the time 
during which the I/O operation is underway overlaps with the execution of 
user instructions.

31



An interrupt triggers a number of events, both in the processor hardware and in software. 

This figure shows a typical sequence.

When an I/O device completes an I/O operation, the following sequence of hardware events occurs:

1. The device issues an interrupt signal to the processor.

2. The processor finishes execution of the current instruction before responding to the interrupt.

3. The processor tests for a pending interrupt request, determines that there is one, and sends an acknowledgment signal to the 
device that issued the interrupt.

• The acknowledgment allows the device to remove its interrupt signal.

4.The processor next needs to prepare to transfer control to the interrupt routine. 

5. The processor then loads the program counter with the entry location of the interrupt-handling routine that will respond to 
this interrupt. 

6. At this point, the program counter and PSW relating to the interrupted program have been saved on the control stack.

• Next slide shows more detail on this step

7. The interrupt handler may now proceed to process the interrupt.

8. The saved register values are retrieved from the stack and restored to the registers

9. The final act is to restore the PSW and program counter values from the stack.

It is important to save all of the state information about the interrupted program for later resumption.

• Because the interrupt is not a routine called from the program. 

• Rather, the interrupt can occur at any time and therefore at any point in the execution of a user program. 

• Its occurrence is unpredictable.
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From step 6 in previous diagram

In this case, a user program is interrupted after the instruction at location N. 

The contents of all of the registers plus the address of the next instruction (N + 1), a 
total of M words, are pushed onto the control stack. 

• The stack pointer is updated to point to the new top of stack, and the 
program counter is updated to point to the beginning of the interrupt service 
routine.
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Suppose that one or more interrupts can occur while an interrupt is being processed. 

E.G. , a program may be receiving data from a communications line and printing 
results at the same time.

• The printer will generate an interrupt every time that it completes a print 
operation.

• The communication line controller will generate an interrupt every time a 
unit of data arrives.

Two approaches can be taken to dealing with multiple interrupts.

The first is to disable interrupts while an interrupt is being processed.

• A disabled interrupt simply means that the processor ignores any new 
interrupt request signal. 

•If an interrupt occurs during this time, it generally remains pending and will 
be checked by the processor after the processor has re-enabled interrupts.

A second approach is to define priorities for interrupts and to allow an interrupt of 
higher priority to cause a lower-priority interrupt handler to be interrupted.
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Simple sequential approach to multiple interrupts

35



Using priorities to “nest” interrupt processing
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As an example of this second approach, consider a system with three I/O devices: 

• a printer (priority 2), 

• a disk (priority 4), and 

• a communications line (priority 5).

This figure illustrates a possible sequence.

1. A user program begins at t= 0.

2. At t=10, a printer interrupt occurs; 

• user information is placed on the control stack and execution continues at the printer 
interrupt service routine (ISR).

3. While this routine is still executing, at t =15 a communications interrupt occurs. 

• Because the communications line has higher priority than the printer, the interrupt 
request is honored. 

4. The printer ISR is interrupted, its state is pushed onto the stack, and execution continues at the 
communications ISR.

5. While this routine is executing, a disk interrupt occurs (t=20).

• Because this interrupt is of lower priority, it is simply held, and the communications ISR 
runs to completion.

6. When the communications ISR is complete (t=25), the previous processor state is restored, which 
is the execution of the printer ISR. 

7. However, before even a single instruction in that routine can be executed, the processor honors
the higher-priority disk interrupt and transfers control to the disk ISR. 

8. Only when that routine is complete (t=35) is the printer ISR resumed.

9. When that routine completes (t=40), control finally returns to the user program.
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Even with the use of interrupts, a processor may not be used very efficiently. 
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There is a tradeoff among the three key characteristics of memory: 

• namely, capacity, access time, and cost.

A variety of technologies are used to implement memory systems, and across this 
spectrum of technologies, the

following relationships hold:

• Faster access time, greater cost per bit

• Greater capacity, smaller cost per bit

• Greater capacity, slower access speed
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NOTE: Onclick, Animated diagram slides to centre and grows 

A typical hierarchy is illustrated in this figure.

As one goes down the hierarchy, the following occur:

a. Decreasing cost per bit

b. Increasing capacity

c. Increasing access time

d. Decreasing frequency of access to the memory by the processor

Thus, smaller, more expensive, faster memories are supplemented by larger, cheaper, 
slower memories.

The key to the success of this organization decreasing frequency of access at lower 
levels.
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External, nonvolatile memory is also referred to as secondary memory or auxiliary 
memory. 

These are used to store program and data files and are usually visible to the 
programmer only in terms of files and records, as opposed to individual bytes or 
words.
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Although cache memory is invisible to the OS, it interacts with other memory 
management hardware.

On all instruction cycles, the processor accesses memory at least once, 

• to fetch the instruction, and often one or more additional times, to fetch 
operands and/or store results.

The rate at which the processor can execute instructions is clearly limited by the 
memory cycle time

•i.e. the time it takes to read one word from or write one word to memory.

This limitation has been a significant problem because of the persistent mismatch 
between processor and main memory speeds: 

• Over the years, processor speed has consistently increased more rapidly 
than memory access speed.

• We are faced with a tradeoff among speed, cost, and size. 

Ideally, main memory should be built with the same technology as that of the 
processor registers, giving memory cycle times comparable to processor cycle times.

• This has always been too expensive a strategy.

• The solution is to exploit the principle of locality by providing a small, fast 
memory between the processor and main memory, namely the cache.
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Cache memory is intended to provide memory access time approaching that of the 
fastest memories available and at the same time support a large memory size that 
has the price of less expensive types of semiconductor memories. 

There is a relatively large and slow main memory together with a smaller, faster 
cache memory.

• The cache contains a copy of a portion of main memory.
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When the processor attempts to read a byte or word of memory, a check is made to 
determine if the byte or word is in the cache.

• If so, the byte or word is delivered to the processor. 

• If not, a block of main memory, consisting of some fixed number of bytes, is 
read into the cache and then the byte or word is delivered to the processor.

Because of the phenomenon of locality of reference, when a block of data is fetched 
into the cache to satisfy a single memory reference, it is likely that many of the near-
future memory references will be to other bytes in the block.

47



Figure 1.17 depicts the structure of a cache/main memory system.

Main memory consists of up to 2
n 

addressable words, with each word having a unique n-bit 
address.

For mapping purposes, this memory is considered to consist of a number of fixed-length 
blocks of K words each.

•i.e., there are M=2
n

/K blocks.

Cache consists of C slots (also referred to as lines) of K words each, and the number of slots is 
considerably less than the number of main memory blocks (C << M).

Some subset of the blocks of main memory resides in the slots of the cache. 

• If a word in a block of memory that is not in the cache is read, that block is 
transferred to one of the slots of the cache.

Because there are more blocks than slots, an individual slot cannot be uniquely and 
permanently dedicated to a particular block. 

• Therefore, each slot includes a tag that identifies which particular block is currently 
being stored.

• The tag is usually some number of higher-order bits of the address and refers to all 
addresses that begin with that sequence of bits.
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Figure 1.18 illustrates the read operation.

The processor generates the address, RA, of a word to be read. 

If the word is contained in the cache, 

• it is delivered to the processor. 

• Otherwise, the block containing that word is loaded into the cache and the 
word is delivered to the processor.
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We will see that similar design issues must be addressed in dealing with virtual 
memory and disk cache design. 

They fall into the following categories:

• Cache size

• Block size

• Mapping function

• Replacement algorithm

• Write policy
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We have already dealt with the issue of cache size. 

• It turns out that reasonably small caches can have a significant impact on 
performance.

Another size issue is that of block size: 

• the unit of data exchanged between cache and main memory.

As the block size increases from very small to larger sizes, the hit ratio will at first 
increase because of the principle of locality: 

• the high probability that data in the vicinity of a referenced word are likely to 
be referenced in the near future.

As the block size increases, more useful data are brought into the cache. 

•The hit ratio will begin to decrease.

• However, as the block becomes even bigger and the probability of using the 
newly fetched data becomes less than the probability of reusing the data that 
have to be moved out of the cache to make room for the new block.
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When a new block of data is read into the cache, the mapping function determines 
which cache location the block will occupy.

Two constraints affect the design of the mapping function. 

First, when one block is read in, another may have to be replaced.

• We would like to do this in such a way as to minimize the probability that we 
will replace a block that will be needed in the near future.

• The more flexible the mapping function, the more scope we have to design a 
replacement algorithm to maximize the hit ratio. 

Second, the more flexible the mapping function, the more complex is the circuitry 
required to search the cache to determine if a given block is in the cache.
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The  replacement algorithm chooses, within the constraints of the mapping function, 
which block to replace when a new block is to be loaded into the cache and the cache 
already has all slots filled with other blocks.

We would like to replace the block that is least likely to be needed again in the near 
future.

•Although it is impossible to identify such a block, 

• a reasonably effective strategy is to replace the block that has been in the 
cache longest with no reference to it.

• This policy is referred to as the least-recently-used (LRU) algorithm. 

Hardware mechanisms are needed to identify the least-recently-used block.
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If the contents of a block in the cache are altered, then it is necessary to write it back 
to main memory before replacing it.

The write policy dictates when the memory write operation takes place. 

• At one extreme, the writing can occur every time that the block is updated. 

• At the other extreme, the writing occurs only when the block is replaced. 

The latter policy minimizes memory write operations but leaves main memory in an 
obsolete state.

• This can interfere with multiple-processor operation and with direct memory 
access by I/O hardware modules.

54



55



56



The I/O module performs the requested action and then sets the appropriate bits in 
the I/O status register but takes no further action to alert the processor. 

In particular, it does not interrupt the processor. 

• Thus, after the I/O instruction is invoked, the processor must take some 
active role in determining when the I/O instruction is completed. 

• So, the processor periodically checks the status of the I/O module until it 
finds that the operation is complete.
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With this technique, the processor is responsible for extracting data from main 
memory for output and storing data in main memory for input. 

The instruction set includes I/O instructions in the following categories:

• Control:Used to activate an external device and tell it what to do. 

• e.g. a magnetic-tape unit may be instructed to rewind or to move forward 
one record.

• Status: Used to test various status conditions associated with an I/O module and its 
peripherals.

• Transfer:Used to read and/or write data between processor registers and external 
devices.
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Data are read in one word (e. g., 16 bits) at a time.

For each word that is read in, the processor must remain in a status-checking loop 
until it determines that the word is available in the I/O module’s data register. 

This flowchart highlights the main disadvantage of this technique: 

• It is a time-consuming process that keeps the processor busy needlessly.
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The processor to issues an I/O command to a module and then go on to do some 
other useful work.

• The I/O module will then interrupt the processor to request service when it 
is ready to exchange data with the processor.

• The processor then executes the data transfer, as before, and then resumes 
its former processing.
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This figure shows the use of interrupt-driven I/O for reading in a block of data. 

Interrupt-driven I/O is more efficient than programmed I/O because it eliminates 
needless waiting.

• However, interrupt-driven I/O still consumes a lot of processor time, because 
every word of data that goes from memory to I/O module or from I/O module 
to memory must pass through the processor.
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When large volumes of data are to be moved, a more efficient technique is required: 
direct memory access (DMA). 

The DMA function can be performed by a separate module on the system bus or it 
can be incorporated into an I/O module. 

When the processor wishes to read or write a block of data, it issues a command to 
the DMA module, by sending to the DMA module the following information:

• Whether a read or write is requested 

• The address of the I/O device involved 

•The starting location in memory to read data from or write data to

• The number of words to be read or written

62



The processor can continue with other work. 

It has delegated this I/O operation to the DMA module, and that module will take 
care of it. 

• The DMA module transfers the entire block of data, one word at a time, 
directly to or from memory without going through the processor.

When the transfer is complete, the DMA module sends an interrupt signal to the 
processor.

• Thus the processor is involved only at the beginning and end of the transfer 
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