
These slides are intended to help a teacher develop a presentation. This PowerPoint 
covers the entire chapter and includes too many slides for a single delivery. Professors 
are encouraged to adapt this presentation in ways which are best suited for their 
students and environment.
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Note: In this chapter, reference is occasionally made to virtual memory. Much of the 
time, we can ignore this concept in dealing with processes, but at certain

points in the discussion, virtual memory considerations are pertinent. Virtual memory 
is not discussed in detail until Chapter 8.

Refer students to a brief overview which is provided in Chapter 2.
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Explain that:

• on a multiprogramming uniprocessor, the execution of multiple processes 
can be interleaved in time. 

• on a multiprocessor, not only may process execution be interleaved, but also 
multiple processes can execute simultaneously. 

Explain that process management is compounded by the introduction of the concept 
of thread. In a multithreaded system, 

•the process retains the attributes of resource ownership, 

•The thread retains the attributes of multiple, concurrent execution streams 
running within a process.
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Recapping chapters 1 & 2
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Mention that this list is not necessarily complete, and may include optional elements 
(e.g. not all OS’s may need a process to have accounting information)
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Emphasise that the Process Control Block contains sufficient information so that it is 
possible to interrupt a running process and later resume execution as if the 
interruption had not occurred.
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Animated slide

Wipes down to give impression of process progression

13



Animated slide 

Explain the scenario then click for the animation

The shaded areas represent code executed by the dispatcher. 

The same sequence of instructions is executed by the dispatcher in each instance because 
the same functionality of the dispatcher is being executed.

We assume that the OS only allows a process to continue execution for a maximum of six 
instruction cycles, after which it is interrupted; this prevents any single process from 
monopolizing processor time. 

Animate here

The first six instructions of process A are executed, followed by a time-out and the execution 
of some code in the dispatcher, which executes six instructions before  turning control to 
process B2. 

After four instructions are executed, process B requests an I/O action for which it must wait. 
Therefore, the processor stops executing process B and moves on, via the dispatcher, to 
process C. 

After a time-out, the processor moves back to process A. When this process times out, 
process B is still waiting for the

I/O operation to complete, so the dispatcher moves on to process C again.
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Progress indicator
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Emphasize that you are introducing a Simple model and that this will be expanded.

The operating system’s principal responsibility is controlling the execution of 
processes;

this includes determining the interleaving pattern for execution and allocating 
resources to processes. 

The first step in designing an OS to control processes is to describe the behaviour that 
we would like the processes to exhibit. In the most simple model, a process is either 
running, or it is not.
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Animated slide The animation only shows one process moving.

There needs to be some structure so that the OS can keep track of the processes. This 
could be a simple queue which is managed by the dispatcher routine of the OS.
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There are many reasons why a process may be  created or terminated. 
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Typically, the “related” processes need to communicate and cooperate with each 
other. Achieving this cooperation is a difficult task for the programmer; discussed 
further in Chapter 5.
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If all processes were always ready to execute, then the simple FIFO queuing model would 
suffice.

However, even with simple examples, this implementation is inadequate:

• some processes in the Not Running state are ready to execute,

• while others are blocked, waiting for an I/O operation to complete.

In a two state model, the dispatcher would have to scan the list looking for the process that is 
not blocked and that has been in the queue the longest.

But we could split the Not Running state into two states: 

• Ready and 

• Blocked. 

For good measure, we have added two additional states that will prove useful (new and exit)

Suggestion:

• Mention that “Wait” and “Blocked” have the same meaning here.

• Talk through the state transitions.
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In the simplest solution, this model would require an additional queue for the 
blocked processes.

But when an event occurs the dispatcher would have to cycle through the entire 
queue to see which process is waiting for the event.

This can cause huge overhead when their may be 100’s or 1000’s of processes
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More efficient to have a separate ‘blocked’ queue for each type of event.
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Mention that the aim is to fully utilize the processor.
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Again, the simple solution is to add a single state – but this only allows processes 
which are blocked to be swapped out.
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Two suspend states allow all processes which are not actually running to be swapped.

Run through the four states:

• Ready: The process is in main memory and available for execution.

• Blocked: The process is in main memory and awaiting an event.

• Blocked/Suspend: The process is in secondary memory and awaiting an event.

• Ready/Suspend: The process is in secondary memory but is available for execution as soon as it is 
loaded into main memory.

It would be useful to also summarise the main transitions (abridged)

Blocked   Blocked/Suspend: If there are no ready processes, then at least one blocked process is 
swapped out to make room for another process that is not blocked. This transition can be made even 
if there are ready processes available, if the OS determines that the currently running process or a 
ready process that it would like to dispatch requires more main memory to maintain adequate 
performance.

Blocked/Suspend   Ready/Suspend: A process in the Blocked/Suspend state is moved to the 
Ready/Suspend state when the event for which it has been waiting occurs. 

Ready/Suspend S  Ready: When there are no ready processes in main memory, or if a suspended 
process has a higher priority, the OS will need to bring one in to continue execution. 

Ready  Ready/Suspend: Normally, the OS would prefer to suspend a blocked process rather than a 
ready one, because the ready process can now be executed, whereas the blocked process is taking up 
main memory space and cannot be executed. However, it may be necessary to suspend a ready 
process if that is the only way to free up a sufficiently large block of main memory.

Next picture...
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Several other transitions that are worth considering are the following:

New  Ready/Suspend and New Ready:  When a new process is created, it can either be 
added to the Ready queue or the Ready/Suspend queue. In either case, the OS must create a 
process control block and allocate an address space to the process. It might be preferable for 
the OS to perform these housekeeping duties at an early time, so that it can maintain a large 
pool of processes that are not blocked. With this strategy, there would often be insufficient 
room in main memory for a new process; hence the use of the (New  Ready/Suspend) 
transition. 

Blocked/Suspend  Blocked: Inclusion of this transition may seem to be poor design. After 
all, if a process is not ready to execute and is not already in main memory, what is the point 
of bringing it in? But consider the following scenario:

• A process terminates, freeing up some main memory.

• There is a process in the (Blocked/Suspend) queue with a higher priority than any of 
the processes in the (Ready/Suspend) queue and 

• the OS has reason to believe that the blocking event for that process will occur 
soon. 

• Under these circumstances, it would seem reasonable to bring a blocked process 
into main memory in preference to a ready process.

Running   Ready/Suspend: Normally, a running process is moved to the Ready state when 
its time allocation expires. If, however, the OS is pre-empting the process because a higher-
priority process on the Blocked/Suspend queue has just become unblocked, the OS could 
move the running process directly to the (Ready/Suspend) queue and free some main 
memory.

Any State  Exit: Typically, a process terminates while it is running, either because it has 
completed or because of some fatal fault condition. However, in some operating systems, a 
process may be terminated by the process that created it or when the parent process is itself 
terminated. If this is allowed, then a process in any state can be moved to the Exit state.
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The comments are summarized due to space on slide
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Progress indicator
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The OS controls events within the computer system. It schedules and dispatches 
processes for execution by the processor, allocates resources to processes, and 
responds

to requests by user processes for basic services.

Fundamentally, we can think of the OS as that entity that manages the use of system 
resources by processes.

In this slide –

• There are a number of processes (P1, . . ., Pn,) that have been created and 
exist in virtual memory. 

• Each process, during the course of its execution, needs access to certain 
system resources, including the processor, I/O devices, and main memory.

• In the figure, process P1 is running; at least part of the process is in main 
memory, and it has control of two I/O devices. 

• Process P2 is also in main memory but is blocked waiting for an I/O device 
allocated to P1.

• Process Pn has been swapped out and is therefore suspended.
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A general idea of the scope of the tables is in  Figure 3.11, which shows four different 
types of tables maintained by the OS: 

• memory, 

• I/O, 

•file, 

•process.

Although the details will differ from one OS to another, fundamentally, all operating 
systems maintain information in these four categories.

The next few slides mention details of these four tables.

You may prefer to stick with this diagram and discuss each from here
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Memory tables are used to keep track of both main (real) and secondary (virtual) 
memory. 

Some of main memory is reserved for use by the OS; the remainder is available for 
use by processes. 

Processes are maintained on secondary memory using some sort of virtual memory 
or simple swapping mechanism.
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I/O tables are used by the OS to manage the I/O devices and channels of the 
computer system.

At any given time, an I/O device may be available or assigned to a particular process. 

If an I/O operation is in progress, the OS needs to know the status of the I/O 
operation and the location in main memory being used as the

source or destination of the I/O transfer. 
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The OS may also maintain file tables.

Much, if not all, of this information may be maintained and used by a file 
management system, in which case the OS has little or no knowledge of files.

In other operating systems, much of the detail of file management is managed by the 
OS itself.
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Finally, the OS must maintain process tables to manage processes. 

The remainder of this section is devoted to an examination of the required process 
tables.

Note: Although Figure 3.11 (earlier slide ) shows four distinct sets of tables, it should 
be clear that these tables must be linked or cross-referenced in some fashion. 

•Memory, I/O, and files are managed on behalf of processes, so there must be 
some reference to these resources, directly or indirectly, in the process tables. 

The files referred to in the file tables are accessible via an I/O device and will, at some 
times, be in main or virtual memory.

The tables themselves must be accessible by the OS and therefore are subject to 
memory management.
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A sophisticated multiprogramming system requires a great deal of information about 
each process. 

Different systems will organize this information in different ways

For now, let us simply explore the type of information that might be of use to an OS 
without considering in any detail how that information is organized.

Table 3.5 in the book (not in this slide set) lists the typical categories of information 
required by the OS for each process. 

We can group the process control block information into three general categories:

• Process identification

• Processor state information

• Process control information
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In virtually all operating systems, each process is assigned a unique numeric identifier, 

• which may simply be an index into the primary process table (see Figure 3.11); 

• otherwise there must be a mapping that allows the OS to locate the appropriate 
tables based on the process identifier. 

This identifier is useful in several ways. 

Many of the other tables controlled by the OS may use process identifiers to cross-reference 
process tables. 

For example, 
• The memory tables may be organized so as to provide a map of main memory with 
an indication of which process is assigned to each region. 

• Similar references will appear in I/O and file tables.

• When processes communicate with one another, the process identifier informs the 
OS of the destination of a particular communication.

• When processes are allowed to create other processes, identifiers indicate the 
parent and descendents of each process.

In addition to these process identifiers, a process may be assigned a user identifier that 
indicates the user responsible for the job.
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Processor state information consists of the contents of processor registers. 

While a process is running the information is in the registers. 

When a process is interrupted, all of this register information must be saved so that it 
can be restored when the process resumes execution. Nature and number of 
processes  vary by processor design

Typically, the register set will include user-visible registers, control and status 
registers, and stack pointers. 
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All processor designs include a register or set of registers, often known as the 
program status word (PSW), that contains status information.

The PSW typically contain condition codes plus other status information. 

A good example of a processor status word is that on Pentium processors, 
referred to as the EFLAGS register 

This structure is used by any OS (including UNIX and Windows) running on a Pentium 
processor.
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This is the additional information needed by the OS to control and coordinate the 
various active processes.

The last part of Table 3.5 indicates the scope of this information. 

As we examine the details of operating system functionality in succeeding chapters, 
the need for the various items on this list should become clear.
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Figure 3.13 suggests the structure of process images in virtual memory. 

Each process image consists of

• a process control block, 

• a user stack, 

• the private address space of the process, and 

• any other address space that the process shares with other processes. 

In the figure, each process image appears as a contiguous range of addresses. In an 
actual implementation, this may not be the case; it will depend on the memory 
management scheme and the way in which control structures are organized by the 
OS.

The process control block may contain structuring information, including pointers 
that allow the linking of process control blocks.

Thus, the queues that were described in the preceding section could be 
implemented as linked lists of process control blocks. 
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The process control block is the most important data structure in an OS.

• Each process control block contains all of the information about a process that is 
needed by the OS. 

•The blocks are read and/or modified by virtually every module in the OS, including 
those involved with scheduling, resource allocation, interrupt processing, and 
performance monitoring and analysis.

One can say that the set of process control blocks defines the state of the OS.

Important design issue. 

A number of routines within the OS will need access to information in process control blocks.

The difficulty is not access but rather protection. 

Two problems present themselves:

• A bug in a single routine, such as an interrupt handler, could damage process 
control blocks, which could destroy the system’s ability to manage the affected 
processes.

• A design change in the structure or semantics of the process control block could 
affect a number of modules in the OS.
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Progress indicator

44



The less-privileged mode is often referred to as the user mode, because user programs 
typically would execute in this mode. 

Mention that System Mode is also known as

• Control Mode

• Kernel Mode

• Protected Mode

Certain instructions can only be executed in the more-privileged mode.

•Including reading or altering a control register, such as the program status word; 

• primitive I/O instructions; 

•Instructions that relate to memory management. 

In addition, certain regions of memory can only be accessed in the more-privileged mode. 

Table 3.7 lists the functions typically found in the kernel of an OS.

Questions: How does the processor know in which mode it is to be executing? And how does 
it change

Answer:  

• Typically a flag (single bit) in the program status word (PSW). This bit is changed in 
response to certain events. 

• Typically, when a user makes a call to an operating system service or when an 
interrupt triggers execution of an operating system routine, the mode is set to the 
kernel mode and, upon return from the service to the user process, the mode is set 
to user mode. 
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A process switch may occur any time that the OS has gained control from the currently running process. 

Table 3.8 suggests the possible events that may give control to the OS.

Two kinds of system interrupts, 

• one is simply called an interrupt, 

• and the other called a trap.

“interrupts” are due to some sort of event that is external to and independent of the currently running process, 
such as the completion of an I/O operation. 

With an ordinary interrupt, control is first transferred to an interrupt handler, which does some basic 
housekeeping and then branches to an OS routine that is concerned with

the particular type of interrupt that has occurred.

“Traps” relate to an error or exception condition generated within the currently running process, such as an illegal 
file access attempt.

With traps, the OS determines if the error or exception condition is fatal. 

• If so, then the currently running process is moved to the Exit state and a process switch occurs. 

• If not, then the action of the OS will depend on the nature of the error and the design of the OS.

•It may attempt some recovery procedure or simply notify the user.

•It may do a process switch or resume the currently running process.

Finally, the OS may be activated by a supervisor call from the program being executed. 

For example, a user process is running and an instruction is executed that requests an I/O operation, 
such as a file open.

This call results in a transfer to a routine that is part of the operating system code. The use of a system call may 
place the user process in the Blocked state.
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If the currently running process is to be moved to another state (Ready, Blocked, etc.), 
then the OS must make substantial changes in its environment. 

The steps involved in a full process switch are as follows:

1. Save the context of the processor, including program counter and other 
registers.

2. Update the process control block of the process that is currently in the 
Running state. 

This includes changing the state of the process to one of the other 
states (Ready; Blocked; Ready/Suspend; or Exit). Other relevant fields 
must also be updated, including the reason for leaving the Running 
state and accounting information.

3. Move the process control block of this process to the appropriate queue 
(Ready;Blocked on Eventi; Ready/Suspend).

More next slide
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4. Select another process for execution; 

5. Update the process control block of the process selected. This includes 
changing the state of this process to Running.

6. Update memory management data structures. This may be required, 
depending on how address translation is managed;

7. Restore the context of the processor to that which existed at the time the 
selected process was last switched out of the Running state, by loading in the 
previous values of the program counter and other registers.
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If the OS is just a collection of programs and if it is executed by the processor just like 
any other program, is the OS a process?

If so, how is it controlled? These interesting questions have inspired a number of 
design approaches. 
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This figure is explained in the following slides
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The key point  is that the concept of process is considered to apply only to user programs. 
The operating system code is executed as a separate entity that operates in privileged mode.

Common on many older operating systems, 

Execute the kernel of the OS outside of any process. 

When the currently running process is interrupted or issues a supervisor call, 

the mode context of this process is saved and control is passed to the kernel.

The OS has its own region of memory to use and its own system stack for controlling 
procedure calls and returns.

The OS can perform any desired functions and restore the context of the interrupted process, 
which causes execution to resume in the interrupted user process.

Or, the OS can complete the function of saving the environment of the process and proceed 
to schedule and dispatch another process. Whether this happens depends on the reason for 
the interruption and the circumstances at the time.

The key point  is that the concept of process is considered to apply only to user programs. 
The operating system code is executed as a separate entity that operates in privileged mode.
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Common with operating systems on smaller computers (PCs, workstations)

Execute virtually all OS software in the context of a user process

The view is that the OS is primarily a collection of routines that the user calls to perform various functions, 
executed within the environment of the user’s process. 

At any given point, the OS is managing n process images. 

Each image includes not only the regions illustrated, but also program, data, and stack areas for kernel 
programs.

Figure 3.16 suggests a typical process image structure for this strategy.

• A separate kernel stack is used to manage calls/returns while the process is in kernel mode.

• Operating system code and data are in the shared address space and are shared by all user processes. 

• When an interrupt, trap, or supervisor call occurs, the processor is placed in kernel mode and control 
is passed to the OS.

• To pass control from a user program to the OS, the mode context is saved and a mode switch takes 
place to an operating system routine. 

• However, execution continues within the current user process. Thus, a process switch is not 
performed, just a mode switch within the same process.

• If the OS, upon completion of its work, determines that the current process should continue to run, 
then a mode switch resumes the interrupted program within the current process.

This is one of the key advantages of this approach: 

A user program has been interrupted to employ some operating system routine, and then resumed, and 
all of this has occurred without incurring the penalty of two process switches. 
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Another alternative is to implement the OS as a collection of system processes. 

As in the other options, the software that is part of the kernel executes in a kernel 
mode. 

In this case, however, major kernel functions are organized as separate 
processes. 

Again, there may be a small amount of process switching code that is executed 
outside of any process.

This approach has several advantages. 

• It imposes a program design discipline that encourages the use of a modular 
OS with minimal, clean interfaces between the modules. 

• Some noncritical operating system functions are conveniently implemented 
as separate processes. 

• Implementing the OS as a set of processes is useful in a multiprocessor or 
multicomputer environment, in which some of the operating system services 
can be shipped out to dedicated processors, improving performance.
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An OS associates a set of privileges with each process.

These privileges dictate what resources the process may access, including regions of 
memory, files, privileged system instructions, and so on.

•Typically, a process that executes on behalf of a user has the privileges that 
the OS recognizes for that user.

• A system or utility process may have privileges assigned at configuration 
time.

Typically the highest level of privilege is referred to as administrator, supervisor, or 
root, access. Root access provides access to all the functions and

services of the operating system.

• With root access, a process has complete control of the system and can add 
or changes programs and files, monitor other processes, send and receive 
network traffic, and alter privileges.

• A key security issue in the design of any OS is to prevent, or at least detect, 
attempts by a user or a piece of malicious software (malware) from gaining 
unauthorized privileges on the system and, in particular, from gaining root 
access.
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Intruder:

•Masquerader: An individual who is not authorized to use the computer and 
who penetrates a system’s access controls to exploit a legitimate user’s 
account

•Misfeasor: A legitimate user who accesses data, programs, or resources for 
which such access is not authorized, or who is authorized for such access but 
misuses his or her privileges

•Clandestine user: An individual who seizes supervisory control of the system 
and uses this control to evade auditing and access controls or to suppress 
audit collection
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RFC 2828 defines an IDS as 

A security service that monitors and analyzes system events for the purpose of 
finding, and providing real-time or near-real-time warning of, attempts to access 
system resources in an unauthorized manner.

• Host-based IDS: Monitors the characteristics of a single host and the events occurring 
within that host for suspicious activity

• Network-based IDS: Monitors network traffic for particular network segments or devices 
and analyzes network, transport, and application protocols to identify suspicious activity 

An IDS comprises three logical components:

• Sensors: Sensors are responsible for collecting data. The input for a sensor may be 
any part of a system that could contain evidence of an intrusion. Types of input to a 
sensor include network packets, log files, and system call traces. Sensors collect and 
forward this information to the analyzer.

•Analyzers: Analyzers receive input from one or more sensors or from other 
analyzers. The analyzer is responsible for determining if an intrusion has occurred. 
The output of this component is an indication that an intrusion has occurred. The 
output may include evidence supporting the conclusion that an intrusion occurred. 
The analyzer may provide guidance about what actions to take as a result of the 
intrusion. 

•User interface: The user interface to an IDS enables a user to view output from the 
system or control the behaviour of the system. In some systems, the user interface 
may equate to a manager, director, or console component. 
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RFC 2828 defines user authentication as follows:

The process of verifying an identity claimed by or for a system entity. An 
authentication process consists of two steps:

•Identification step: Presenting an identifier to the security system. (Identifiers 
should be assigned carefully, because authenticated identities are the basis for other 
security services, such as access control service.)

•Verification step: Presenting or generating authentication information that 
corroborates the binding between the entity and the identifier.

Be prepared to elaborate on each factor with examples. Point out that each has weaknesses, 
but strength comes with multiple factors (e.g. password and token)

Four Factors:

•Something the individual knows: Examples include a password, a personal 
identification number (PIN), or answers to a prearranged set of questions.

• Something the individual possesses: Examples include electronic keycards, smart 
cards, and physical keys. This type of authenticator is referred to as a token.

• Something the individual is (static biometrics): Examples include recognition by 
fingerprint, retina, and face.

• Something the individual does (dynamic biometrics): Examples include recognition 
by voice pattern, handwriting characteristics, and typing rhythm.
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Access control implements a security policy that specifies who or what (e.g., in the 
case of a process) may have access to each specific system resource and the type of 
access that is permitted in each instance.

A security administrator maintains an authorization database that specifies what type 
of access to which resources is allowed for this user. 

The access control function consults this database to determine whether to grant 
access.

An auditing function monitors and keeps a record of user accesses to system 
resources.
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Firewalls can be an effective means of protecting a local system or network of 
systems from network-based security threats while at the same time affording access 
to the outside world via wide area networks and the Internet.

Traditionally, a firewall is a dedicated computer that interfaces with computers 
outside a network and has special security precautions built into it in order to protect 
sensitive files on computers within the network. 

It is used to service outside network, especially Internet, connections and dial-in 
lines. Personal firewalls that are implemented in hardware or software, and 
associated with a single workstation or PC, are also common.
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Progress indicator
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UNIX System V makes use of a simple but powerful process facility that is highly 
visible to the user. 

System processes run in kernel mode and execute operating system code to perform 
administrative and housekeeping functions, such as allocation of memory and 
process swapping.

User processes operate in:

• user mode to execute user programs and utilities

• in kernel mode to execute instructions that belong to the kernel.

A user process enters kernel mode by issuing a system call, when an exception (fault) 
is generated, or when an interrupt occurs.
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A total of nine process states are recognized by the UNIX SVR4 operating system;

This figure is similar to Figure 3.9b, with the two UNIX sleeping states corresponding 
to the two blocked states. 

Point out that:

• UNIX employs two Running states to indicate whether the process is 
executing in user mode or kernel mode.

• Two states are essentially the same: (Ready to Run, in Memory) and (Pre-
empted) as indicated by the dotted line. The distinction is made to emphasize 
the way in which the pre-empted state is entered. When a process is running 
in kernel mode (as a result of a supervisor call, clock interrupt, or I/O 
interrupt), there will come a time when the kernel has completed its work and 
is ready to return control to the user program. At this point, the kernel may 
decide to pre-empt the current process in favour of one that is ready and of 
higher priority. In that case, the current process moves to the pre-empted 
state. However, for purposes of dispatching, those processes in the pre-
empted state and those in the Ready to Run, in Memory state form one 
queue.
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When the kernel has completed these functions it can do one of the following, as 
part of

the dispatcher routine:

• Stay in the parent process. Control returns to user mode at the point of the 
fork call of the parent.

• Transfer control to the child process. The child process begins executing at 
the same point in the code as the parent, namely at the return from the fork 
call.

• Transfer control to another process. Both parent and child are left in the 
Ready to Run state.

69


