
These slides are intended to help a teacher develop a presentation. This PowerPoint 
covers the entire chapter and includes too many slides for a single delivery. Professors 
are encouraged to adapt this presentation in ways which are best suited for their 
students and environment.
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This chapter continues our survey of process and thread scheduling.

Firstly there is an examination of issues raised by the availability of more than one 
processor.

• We look at the scheduling of processes on a multiprocessor system. 

•Then the somewhat different design considerations for multiprocessor 
thread scheduling are examined.

The second section of this chapter covers real-time scheduling. 

• Beginning with a discussion of the characteristics of real-time processes and 
then looks at the nature of the scheduling process. 

• Two approaches to real-time scheduling are examined:

• deadline scheduling and 

• rate monotonic scheduling.
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We can classify multiprocessor systems as follows:

• Loosely coupled or distributed multiprocessor, or cluster: 

• Consists of a collection of relatively autonomous systems, each 
processor having its own main memory and I/O channels.

• Functionally specialized processors:

• An example is an I/O processor. 

• In this case, there is a master, general-purpose processor; specialized 
processors are controlled by the master processor and provide 
services to it.

• Tightly coupled multiprocessing:

• Consists of a set of processors that share a common main memory 
and are under the integrated control of an operating system.
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A good way of characterizing multiprocessors and placing them in context with other 
architectures is to consider the synchronization granularity, or frequency of 
synchronization, between processes in a system.

We can distinguish five categories of parallelism that differ in the degree of 
granularity.
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With independent parallelism, there is no explicit synchronization among processes. 

Each represents a separate, independent application or job.

A typical use of this type of parallelism is in a time-sharing system. 

• Each user is performing a particular application, such as word processing or 
using a spreadsheet. 

• The multiprocessor provides the same service as a multiprogrammed
uniprocessor.

• Because more than one processor is available, average response time to the 
users will be less.
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With coarse and very-coarse grained parallelism, there is synchronization among 
processes, but at a very gross level.

This kind of situation is easily handled as a set of concurrent processes running on a 
multiprogrammed uniprocessor and can be supported on a multiprocessor with little 
or no change to user software.

6



From chapt 4, we saw that a single application can be effectively implemented as a 
collection of threads within a single process. 

In this case, the programmer must explicitly specify the potential parallelism of an 
application.

• Typically, there will need to be rather a high degree of coordination and 
interaction among the threads of an application, leading to a medium-grain 
level of synchronization.

Because the various threads of an application interact so frequently, scheduling 
decisions concerning one thread may affect the performance of the entire 
application.
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Fine-grained parallelism represents a much more complex use of parallelism than is 
found in the use of threads.

Although much work has been done on highly parallel applications, this is so far a 
specialized and fragmented area, with many different approaches.
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Valve identified systems that operate very effectively being permanently assigned to a 
single processor.

• An example is sound mixing, which has little user interaction, 

• is not constrained by the frame configuration of windows, and 

• works on its own set of data. 

Other modules can be organized into a number of threads so that the module can 
execute on a single processor but achieve greater performance as it is spread out 
over more and more processors.

• e.g. scene rendering, 
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This figure illustrates the thread structure for the rendering module. 

In this hierarchical structure, higher-level threads spawn lower-level threads as 
needed. 

The rendering module relies on a critical part of the Source engine, the world list, a 
database representation of the visual elements in the game’s world. 

The first task is to determine what are the areas of the world that need to be 
rendered. 

• next is to determine what objects are in the scene as viewed from multiple 
angles. 

• Then it has to work out the rendering of each object from multiple points of 
view – VERY processor intensive
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Scheduling on a multiprocessor involves three interrelated issues:

• The assignment of processes to processors

• The use of multiprogramming on individual processors

• The actual dispatching of a process

It is important to keep in mind that the approach taken will depend, in general, on 
the degree of granularity of the applications and on the number of processors 
available.
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Assuming that the architecture of the multiprocessor is uniform, in the sense that no 
processor has a particular physical advantage with respect to access to main memory 
or to I/O devices, 

• then the simplest scheduling approach is to treat the processors as a pooled 
resource 

• and assign processes to processors on demand. 

The question then arises as to whether the assignment should be static or dynamic.

With Dynamic Assignment, threads are moved for a queue for one processor to a 
queue for another processor;

Linux uses this approach.
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If a process is permanently assigned to one processor from activation until its 
completion, 

• then a dedicated short-term queue is maintained for each processor.

An advantage of this approach is that there may be less overhead in the scheduling 
function, because the processor assignment is made once and for all.

Also, the use of dedicated processors allows a strategy known as group or gang 
scheduling, as discussed later.

A disadvantage is that one processor can be idle, with an empty queue, while another 
processor has a backlog. 

• To prevent this situation, a common queue can be used.

• All processes go into one global queue and are scheduled to any available 
processor. 
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Key kernel functions of the operating system always run on a particular processor.

• The other processors may only execute user programs.

The master is responsible for scheduling jobs.

Once a process is active, if the slave needs service (e.g., an I/O call), it must send a 
request to the master and wait for the service to be performed. 

There are two disadvantages to this approach: 

(1) A failure of the master brings down the whole system, 

(2) The master can become a performance bottleneck.
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The kernel can execute on any processor, 

• and each processor does self-scheduling from the pool of available 
processes. 

This approach complicates the operating system. 

The operating system must ensure that two processors do not choose the same 
process and that the processes are not somehow lost from the queue.

Techniques must be employed to resolve and synchronize competing claims to 
resources.
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Usually, processes are not dedicated to processors. 

Instead, a single queue is used for all processors,

• or if some sort of priority scheme is used, there are multiple queues based 
on priority, all feeding into the common pool of processors. 

We can view the system as being a multiserver queuing architecture.
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With threads, the concept of execution is separated from the rest of the definition of 
a process.

• An application can be implemented as a set of threads, which cooperate and 
execute concurrently in the same address space.

Threads on a uniprocessor system can be used as a program structuring aid and to 
overlap I/O with processing. 

However, the full power of threads becomes evident in a multiprocessor system. 

Threads can be used to exploit true parallelism in an application. 

If the various threads of an application are simultaneously run on separate 
processors, dramatic gains in performance are possible.
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Among the many proposals for multiprocessor thread scheduling and processor 
assignment, four general approaches stand out:

•Load Sharing

•Gang Scheduling

•Dedicated processor assignment

•Dynamic scheduling
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Figure 10.2a compares round-robin throughput to FCFS throughput as a function of 
Coefficient Variation. 

• Note that the difference in scheduling algorithms is much smaller in the 
dual-processor case.

• With two processors, a single process with long service time is much less 
disruptive in the FCFS case; other processes can use the other processor.

Similar results are shown in Figure 10.2b.
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Load Sharing: 

• Processes are not assigned to a particular processor. 

• A global queue of ready threads is maintained, and each processor, when 
idle, selects a thread from the queue.

• The term load sharing is used to distinguish this strategy from load-balancing
schemes in which work is allocated on a more permanent basis

Advantages:

• The load is distributed evenly across the processors, assuring that no 
processor is idle while work is available to do.

• No centralized scheduler is required; when a processor is available, the 
scheduling routine of the operating system is run on that processor to select 
the next thread.

• The global queue can be organized and accessed using any of the schemes 
discussed in Chapter 9.
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The central queue occupies a region of memory that must be accessed in a manner 
that enforces mutual exclusion.

• Thus, it may become a bottleneck if many processors look for work at the 
same time.

• When there is only a small number of processors, this is unlikely to be a 
noticeable problem. But when the multiprocessor consists of dozens or even 
hundreds of processors, the potential for bottleneck is real.

Preempted threads are unlikely to resume execution on the same processor.

• If each processor is equipped with a local cache, caching becomes less 
efficient.

If all threads are treated as a common pool of threads, it is unlikely that all of the 
threads of a program will gain access to processors at the same time. 

• If a high degree of coordination is required between the threads of a 
program, the process switches involved may seriously compromise 
performance.
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A set of related threads is scheduled to run on a set of processors at the same time, 
on a one-to-one basis.

If closely related processes execute in parallel, synchronization blocking may be 
reduced, less process switching may be necessary, and performance will increase.

Scheduling overhead may be reduced because a single decision affects a number of 
processors and processes at one time.
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The use of gang scheduling creates a requirement for processor allocation.

Consider an example in which there are two ap plications, 

• one with four threads and one with one thread. 

Using uniform time allocation wastes 37.5% of the processing resource, 

• because when the single-thread application runs, three processors are left 
idle.

If there are several one-thread applications, these could all be fit together to 
increase processor utilization. 

If that option is not available, an alternative to uniform scheduling is scheduling that 
is weighted by the number of threads. 

• Thus, the four-thread application could be given four-fifths of the time and 
the one-thread application given only one-fifth of the time, reducing the 
processor waste to 15%.
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Each program is allocated a number of processors equal to the number of threads in 
the program, for the duration of the program execution.

• When the program terminates, the processors return to the general pool for 
possible allocation to another program.

This approach would appear to be extremely wasteful of processor time. 

• If a thread of an application is blocked waiting for I/O or for synchronization 
with another thread, then that thread’s processor remains idle: there is no 
multiprogramming of processors.

But

1) In a highly parallel system, with tens or hundreds of processors, each of which 
represents a small fraction of the cost of the system, processor utilization is no longer 
so important as a metric for effectiveness or performance.

2) The total avoidance of process switching during the lifetime of a program should 
result in a substantial speedup of that program.
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Figure 10.4 shows the speedup for the applications as the number of threads 
executing the tasks in each application is varied from 1 to 24. 

We see that when both applications are started simultaneously with 24 threads each, 
the speedup obtained, compared to using a single thread for each application, is 2.8 
for matrix multiplication and 2.4 for FFT. 

The figure shows that the performance of both applications worsens considerably 
when the number of threads in each application exceeds 8 and thus the total number 
of processes in the system exceeds the number of processors. 

Furthermore, the larger the number of threads the worse the performance gets, 
because there is a greater frequency of thread preemption and rescheduling. 

• This excessive preemption results in inefficiency from many sources, 
including time spent waiting for a suspended thread to leave a critical section, 
time wasted in process switching, and inefficient cache behavior.
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The number of threads in a process can be altered during the course of execution

• allowing the operating system to adjust the load to improve utilization.
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Real-time computing may be defined as that type of computing in which the 
correctness of the system depends not only on the logical result of the computation 
but also on the time at which the results are produced.

A real-time system is defined by what is meant by a real-time process, or task.

In general, in a real-time system, some of the tasks are real-time tasks, and these 
have a certain degree of urgency to them.
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A hard real-time task is one that must meet its deadline; 

• otherwise it will cause unacceptable damage or a fatal error to the system.

A soft real-time task has an associated deadline that is desirable but not mandatory; 
it still makes sense to schedule and complete the task even if it has passed its 
deadline.
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A periodic task, the requirement may be stated as “once per period T” or “exactly T 
units apart.”

An aperiodic task has a deadline by which it must finish or start, or it may have a 
constraint on both start and finish time. 
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Real-time operating systems can be characterized as having unique requirements in

five general areas:

• Determinism

• Responsiveness

• User control

• Reliability

• Fail-soft operation

34



An operating system is deterministic to the extent that it performs operations at 
fixed, predetermined times or within predetermined time intervals.

One useful measure of the ability of an operating system to function deterministically 
is the maximum delay from the arrival of a high-priority device interrupt to when 
servicing begins. 

• In non-real-time operating systems, this delay may be in the range of tens to 
hundreds of milliseconds, 

• While in real-time operating systems that delay may have an upper bound of 
anywhere from a few microseconds to a millisecond.
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Responsiveness is concerned with how long, after acknowledgment, it takes an 
operating system to service the interrupt.

Aspects of responsiveness include:

1. The amount of time required to initially handle the interrupt and begin 
execution of the interrupt service routine (ISR). 

2. The amount of time required to perform the ISR.

3. The effect of interrupt nesting. 
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In a real-time system it is essential to allow the user fine-grained control over task 
priority.

The user should be able to distinguish between hard and soft tasks and to specify 
relative priorities within each class.

A real-time system may also allow the user to specify such characteristics as 

• the use of paging or process swapping, 

• what processes must always be resident in main memory, 

• what disk transfer algorithms are to be used,

• what rights the processes in various priority bands have, and so on.
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Reliability is typically far more important for real-time systems than non-real-time 
systems

A real-time system is responding to and controlling events in real time.

•Loss or degradation of performance may have catastrophic consequences, 
ranging from financial loss to major equipment damage and even loss of life.

Fail-soft operation is a characteristic that refers to the ability of a system to fail in 
such a way as to preserve as much capability and data as possible. 

An important aspect of fail-soft operation is referred to as stability. 

•A real-time system is stable if, in cases where it is impossible to meet all task 
deadlines, the system will meet the deadlines of its most critical, highest-
priority tasks, even if some less critical task deadlines are not always met.
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In a preemptive scheduler that uses simple round-robin scheduling, a real-time task 
would be added to the ready queue to await its next time slice, as illustrated in Figure 
10.5a.

In this case, the scheduling time will generally be unacceptable for real-time 
applications.
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In a nonpreemptive scheduler, we could use a priority scheduling mechanism, giving 
real-time tasks higher priority. 

In this case, a real-time task that is ready would be scheduled as soon as the current 
process blocks or runs to com-

pletion (Figure 10.5b). 

This could lead to a delay of several seconds if a slow, low-priority task were 
executing at a critical time.

Again, this approach is not acceptable.
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A more promising approach is to combine priorities with clock-based interrupts. 

Preemption points occur at regular intervals.

When a preemption point occurs, the currently running task is preempted if a higher-
priority task is waiting.

This would include the preemption of tasks that are part of the operating 
system kernel.

Such a delay may be on the order of several milliseconds.

While this last approach may be adequate for some real-time applications, it will not 
suffice for more demanding applications. 
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For more demanding applications, the approach that has been taken is sometimes 
referred to as immediate preemption.

In this case, the operating system responds to an interrupt almost immediately, 
unless the system is in a critical-code lockout section.

Scheduling delays for a real-time task can then be reduced to 100 "s or less.
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Static table-driven approaches:

• These perform a static analysis of feasible schedules of dispatching. 

• The result of the analysis is a schedule that determines, at run time, when a task 
must begin execution.

Static priority-driven preemptive approaches: 

• Again, a static analysis is performed, but no schedule is drawn up. 

• The analysis is used to assign priorities to tasks, so that a traditional priority-driven 
preemptive scheduler can be used.

Dynamic planning-based approaches: 

• Feasibility is determined at run time (dynamically) rather than offline prior to the 
start of execution statically).

• An arriving task is accepted for execution only if it is feasible to meet its time 
constraints. 

• One of the results of the feasibility analysis is a schedule or plan that is used to 
decide when to dispatch this task.

Dynamic best effort approaches: 

• No feasibility analysis is performed.

• The system tries to meet all deadlines and aborts any started process whose 
deadline is missed.
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Real-time applications are generally not concerned with sheer speed but rather with 
completing (or starting) tasks at the most valuable times, neither too early nor too 
late, despite dynamic resource demands and conflicts, processing overloads, and 
hardware or software faults. 

Therefore, priorities provide a crude tool and do not capture the requirement of 
completion (or initiation) at the most valuable time.
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Ready time: 

• Time at which task becomes ready for execution. 

Starting deadline: 

• Time by which a task must begin.

Completion deadline: 

• Time by which task must be completed.

Processing time: 

• Time required to execute the task to completion. 

Resource requirements: 

• Set of resources (other than the processor) required by the task while it is executing.

Priority: 

• Relative importance of the task. 

• Hard real-time tasks may have an “absolute” priority, with the system failing if a deadline is missed. 

• If the system is to continue to run no matter what, then both hard and soft real-time tasks may be 
assigned relative priorities as a guide to the scheduler.

Subtask structure: 

• A task may be decomposed into a mandatory subtask and an optional subtask. 

• Only the mandatory subtask possesses a hard deadline.
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The other critical design issue is that of preemption.

When starting deadlines are specified, then a nonpreemptive scheduler makes sense. 

•In this case, it would be the responsibility of the real-time task to block itself 
after completing the mandatory or critical portion of its execution, allowing 
other real-time starting deadlines to be satisfied.

For example, if task X is running and task Y is ready, there may be circumstances in 
which the only way to allow both X and Y to meet their completion deadlines is to 
preempt X, execute Y to completion, and then resume X to completion.
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Movie icon links to animation of Periodic with Completion Deadline: 
http://gaia.ecs.csus.edu/%7ezhangd/oscal/pdeadlineschedulingperiodic.html

As an example of scheduling periodic tasks with completion deadlines, consider a 
system that collects and processes data from two sensors,A and B.

The dead-line for collecting data from 

• sensor A must be met every 20 ms, 

• for B every 50 ms.

It takes 10 ms, including operating system overhead, to process each sample of data 
from A 

• and 25 ms to process each sample of data from B. 

Table 10.2 summarizes the execution profile of the two tasks. 
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Figure 10.6 compares three scheduling techniques using the execution profile of 
Table 10.2. (previous slide)

The first row of Figure 10.6 repeats the information in Table 10.2; 

• the remaining three rows illustrate three scheduling techniques.
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Table 10.3 summarizes the execution profile of the five tasks with starting dead-

lines. 
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Movie icon links to animation of Aperiodic with Starting Deadline: 
http://gaia.ecs.csus.edu/%7ezhangd/oscal/pdeadlinescheduling.html

The top part of Figure 10.7 shows the arrival times and starting deadlines for an 
example consisting of five tasks each of which has an execution time of 20 ms.
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Movie icon links to animation of Rate Monotonic Scheduling: 
http://gaia.ecs.csus.edu/%7ezhangd/oscal/pschedulingrms.html

The highest-priority task is the one with the shortest period, 

• the second highest-priority task is the one with the second shortest period, 
and so on.

When more than one task is available for execution, the one with the shortest period 
is serviced first. 
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If we plot the priority of tasks as a function of their rate, the result is a monotonically 
increasing function 

hence the name, rate monotonic scheduling.
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This figure illustrates the relevant parameters for periodic tasks.

The task’s period, T, is the amount of time between the arrival of one instance of the 
task and the arrival of the next instance of the task.

A task’s rate (in Hertz) is simply the inverse of its period (in seconds). 
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In any priority scheduling scheme, the system should always be executing the task 
with the highest priority. 

Priority inversion occurs when circumstances within the system force a higher-
priority task to wait for a lower-priority task.

A simple example of priority inversion occurs if a lower-priority task has locked a 
resource and a higher-priority task attempts to lock that same resource. 

• The higher-priority task will be put in a blocked state until the resource is 
available. 

• If the lower-priority task soon finishes with the resource and releases it, the 
higher-priority task may quickly resume and it is possible that no real-time 
constraints are violated.
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A more serious condition is referred to as an unbounded priority inversion, in which 
the duration of a priority inversion depends not only on the time required to handle a 
shared resource, but also on the unpredictable actions of other unrelated tasks as 
well.
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The basic idea of priority inheritance is that a lower-priority task inherits the priority of any 
higher-priority task pending on a resource they share.

This priority change takes place as soon as the higher-priority task blocks on the resource; 

• it should end when the resource is released by the lower-priority task. 

This figure shows that priority inheritance resolves the problem of unbounded priority 
inversion illustrated in Figure 10.10a.

The relevant sequence of events is as follows:

t1: T3 begins executing.

t2: T3 locks semaphore s and enters its critical section.

t3: T1, which has a higher priority than T3, preempts T3 and begins executing.

t4: T1 attempts to enter its critical section but is blocked because the semaphore is locked by 
T3.

•T3 is immediately and temporarily assigned the same priority as T1.

•T3 resumes execution in its critical section.

t5: T2 is ready to execute but, because T3 now has a higher priority,T2 is unable to preempt T3.

t6: T3 leaves its critical section and unlocks the semaphore: its priority level is downgraded to 
its previous default level. 

• T1 preempts T3, locks the semaphore, and enters its critical section.

t7: T1 is suspended for some reason unrelated to T2, and T2 begins executing.
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The three Linux scheduling classes are

• SCHED_FIFO: First-in-first-out real-time threads

• SCHED_RR: Round-robin real-time threads

• SCHED_OTHER: Other, non-real-time threads

Within each class, multiple priorities may be used, with priorities in the real-time 
classes higher than the priorities for the SCHED_OTHER class.

The default values are as follows: 

• Real-time priority classes range from 0 to 99 inclusively, 

• and SCHED_OTHER classes range from 100 to 139.

• A lower number equals a higher priority.

61



Figure 10.11 is an example that illustrates the distinction between FIFO and RR scheduling.

Assume a process has four threads with three relative priorities assigned as shown in Figure 
10.11a.

• Assume that all waiting threads are ready to execute when the current thread waits 
or terminates and that no higher-priority thread is awakened while a thread is 
executing. 

Figure 10.11b shows a flow in which all of the threads are in the SCHED_FIFO class.

• Thread D executes until it waits or terminates.

• Next, although threads B and C have the same priority, thread B starts because it 
has been waiting longer than thread C. 

• Thread B executes until it waits or terminates, then thread C executes until it waits 
or terminates. 

• Finally, thread A executes.

Figure 10.11c shows a sample flow if all of the threads are in the SCHED_RR class.

• Thread D executes until it waits or terminates. 

• Next, threads B and C are time sliced, because they both have the same priority. 

• Finally, thread A executes.

The final scheduling class is SCHED_OTHER. A thread in this class can only execute if there are 
no real-time threads ready to execute.
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Linux 2.6 uses a completely new priority scheduler known as the O(1) scheduler.

The scheduler is designed so that the time to select the appropriate process and 
assign it to a processor is constant, regardless of the load on the system or the 
number of processors.
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The kernel maintains two scheduling data structure for each processor in the system

A separate queue is maintained for each priority level. 

• The total number of queues in the structure is MAX_PRIO,which has a 
default value of 140.

The structure also includes a bitmap array of sufficient size to provide one bit per 
priority level.

• With 140 priority levels and 32-bit words, BITMAP_SIZE has a value of 5.

• This creates a bitmap of 160 bits, of which 20 bits are ignored.

• The bitmap indicates which queues are not empty. 

Finally, nr_active indicates the total number of tasks present on all queues.

• Two structures are maintained: an active queues structure and an expired 
queues structure.
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The scheduling algorithm used in UNIX SVR4 is a complete overhaul of the scheduling 
algorithm used in earlier UNIX systems. 

The new algorithm is designed to give highest preference to real-time processes, 
next-highest preference to kernel-mode processes, and lowest preference to other 
user-mode processes, referred to as time-shared processes.
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Figure 10.13 illustrates the 160 priority levels defined in SVR4.

Each process is defined to belong to one of three priority classes and is assigned a 
priority level within that class.

The classes are

Real time (159–100): 

• Processes at these priority levels are guaranteed to be selected to run before 
any kernel or time-sharing process. 

• In addition, real-time processes can make use of preemption points to 
preempt kernel processes and user processes.

Kernel (99–60): 

• Processes at these priority levels are guaranteed to be selected to run before 
any time-sharing process but must defer to real-time processes.

Time-shared (59–0):

The lowest-priority processes, intended for user applications other than real-
time applications.
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Figure 10.14 indicates how scheduling is implemented in SVR4. 

A dispatch queue is associated with each priority level, and processes at a given priority level 
are executed in round-robin fashion.

A bit-map vector, dqactmap, contains one bit for each priority level; 

• the bit is set to one for any priority level with a nonempty queue.

• Whenever a running process leaves the Running state, due to a block, times-slice 
expiration, or preemption, the dispatcher checks dqactmap and dispatches a ready 
process from the highest-priority nonempty queue.

• In addition, whenever a defined preemption point is reached, the kernel checks a 
flag called kprunrun. 

• If set, this indicates that at least one real-time process is in the Ready state, and the 
kernel preempts the current process if it is of lower priority than the highest-priority 
real-time ready process.

Within the time-sharing class, the priority of a process is variable. 

• The scheduler reduces the priority of a process each time it uses up a time 
quantum, and it raises its priority if it blocks on an event or resource.

•The time quantum allocated to a time-sharing process depends on its priority, 
ranging from 100 ms for priority 0 to 10 ms for priority 59. 

• Each real-time process has a fixed priority and a fixed time quantum.
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Priorities in Windows are organized into two bands, or classes: 

•real time and variable. 

•Each of these bands consists of 16 priority levels.

Threads requiring immediate attention are in the real-time class, which includes 
functions such as communications and real-time tasks.

Overall, because Windows makes use of a priority-driven preemptive scheduler, 
threads with real-time priorities have precedence over other threads. 

On a uniprocessor, when a thread becomes ready whose priority is higher than the 
currently executing thread, the lower-priority thread is preempted and the processor 
given to the higher-priority thread.
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Priorities are handled somewhat differently in the two classes 

In the real-time priority class, all threads have a fixed priority that never changes.

• All of the active threads at a given priority level are in a round-robin queue. 

In the variable priority class, a thread’s priority begins at some initial assigned value 
and then may be temporarily boosted (raised) during the thread’s lifetime. 

• There is a FIFO queue at each priority level; 

• a thread will change queues among the variable priority classes as its own 
priority changes. 

• However, a thread at priority level 15 or below is never boosted to level 16 
or any other level in the real-time class.
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Once a thread in the variable priority class has been activated, its actual priority,  
referred  to as  the  thread’s current priority, may  fluctuate within given boundaries.

•The current priority may never fall below the thread’s base priority and it 
may never exceed 15. 

Figure 10.16 gives an example.

The process object has a base priority attribute of 4. 

• Each thread object associated with this process object must have an initial 
priority of between 2 and 6.

• Suppose the base priority for thread is 4.

• Then the current priority for that thread may fluctuate in the range from 4 
through 15 depending on what boosts it has been given. 

• If a thread is interrupted to wait on an I/O event, the Windows Kernel boosts 
its priority. 

• If a boosted thread is interrupted because it has used up its current time 
quantum, the Kernel lowers its priority. 

• Thus, processor-bound threads tend toward lower priorities and I/O-bound 
threads tend toward higher priorities. In the case of I/O-bound threads, the 
Kernel boosts the priority more  for  interactive waits  (e.g., wait on keyboard 
or display)  than  for other types of I/O (e.g., disk I/O).

•Thus, interactive threads tend to have the highest priorities within the 
variable priority class.
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When Windows is run on a single processor, the highest-priority thread is always 
active unless it is waiting on an event. 

If there is more than one thread that has the same highest priority, then the 
processor is shared, round robin, among all the threads at that priority level. 

In a multiprocessor system with N processors, the Kernel tries to give the N 
processors to the N highest priority threads that are ready to run.

The remaining, lower-priority, threads must wait until the other threads block or have 
their priority decay.

Lower-priority threads may also have their priority boosted to 15 for a very short time 
if they are being starved, solely to correct instances of priority inversion.
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