
These slides are intended to help a teacher develop a presentation. This PowerPoint 
covers the entire chapter and includes too many slides for a single delivery. Professors 
are encouraged to adapt this presentation in ways which are best suited for their 
students and environment.
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This chapter is concerned with scheduling on a system with a single processor. 

It is possible to define and clarify many design issues related to scheduling in this 
context.

We examine the three types of processor scheduling: 

• long term,

• medium term, and 

• short term.

The bulk of the chapter focuses on short-term scheduling issues. 
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An operating system must allocate computer resources among the potentially 
competing requirements of multiple processes. 

In the case of the processor, the resource to be allocated is execution time on the 
processor and the

means of allocation is scheduling.
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The scheduling function must be designed to satisfy a number of objectives, including 
fairness, lack of starvation of any particular process, efficient use of processor time, 
and low overhead.

In addition, the scheduling function may need to take into account different levels of 
priority or real-time deadlines for the start or completion of certain processes.
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Long-term scheduling is performed when a new process is created. 

• This is a decision whether to add a new process to the set of processes that 
are currently active.

Medium-term scheduling is a part of the swapping function.

• This is a decision whether to add a process to those that are at least partially 
in main memory and therefore available for execution.

Short-term scheduling is the actual decision of which ready process to execute next.
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Figure 3.9b

Two suspend states allow all processes which are not actually running to be swapped.

• Ready: The process is in main memory and available for execution.

• Blocked: The process is in main memory and awaiting an event.

• Blocked/Suspend: The process is in secondary memory and awaiting an event.

• Ready/Suspend: The process is in secondary memory but is available for execution 
as soon as it is loaded into main memory.
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This figure relates the scheduling functions to the process state transition diagram 
shown in chapter 3 (fig 3.9b)
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This figure reorganizes the state transition diagram to suggest the nesting of 
scheduling functions.
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This figure shows that scheduling affects the performance of the system because it 
determines which processes will wait and which will progress.

The figure shows the queues involved in the state transitions of a process.

• For simplicity, new processes are shown going directly to the Ready state, 
whereas the earlier figures (9.1 and 9.2) show the option of either the Ready 
state or the Ready/Suspend state.

Fundamentally, scheduling is a matter of managing queues to minimize queuing delay 
and to optimize performance in a queuing environment.
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The long-term scheduler determines which programs are admitted to the system for processing. 

• Thus, it controls the degree of multiprogramming. 

In terms of frequency of execution, the long-term scheduler executes relatively infrequently and 
makes the coarse-grained decision of whether or not to take on a new process and which one to take. 

Once admitted, a job or user program becomes a process and is added to the queue for the short-term 
scheduler.

• Or (as on some systems) a newly created process begins in a swapped-out condition, in 
which case it is added to a queue for the medium-term scheduler.

The decision as to which job to admit next can be on a simple first-come-first-served basis, 

•or it can be a tool to manage system performance. 

The criteria used may include

• priority, 

• expected execution time, and 

• I/O requirements. 

The decision as to when to create a new process is generally driven by the desired degree of 
multiprogramming.

The more processes that are created, the smaller is the percentage of time that each process can be 
executed 

• i.e. more processes are competing for the same amount of processor time.
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The medium-term scheduler is executed somewhat more frequently.

Medium-term scheduling is part of the swapping function. 

Typically, the swapping-in decision is based on the need to manage the degree of 
multiprogramming.

On a system that does not use virtual memory, memory management is also an 
issue.

• Thus, the swapping-in decision will consider the memory requirements of 
the swapped-out processes.
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Also known as the dispatcher, executes most frequently and makes the fine-grained 
decision of which process to execute next.

The short-term scheduler is invoked whenever an event occurs that may lead to the 
blocking of the current process or that may provide an opportunity to preempt a 
currently running process in favor of another. 

Examples of such events include

• Clock interrupts

• I/O interrupts

• Operating system calls

• Signals (e.g., semaphores)
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The main objective of short-term scheduling is to allocate processor time in such a 
way as to optimize one or more aspects of system behavior.

Generally, a set of criteria is established against which various scheduling policies may 
be evaluated.
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The commonly used criteria can be categorized along two dimensions. 

We can make a distinction between user-oriented and system-oriented criteria.

User oriented criteria relate to the behavior of the system as perceived by the individual user 
or process. 

•E.g. response time in an interactive system which is the elapsed time 
between the submission of a request until the response begins to appear as 
output. 

• We would like a scheduling policy that provides “good” service to various 
users. A threshold may be defined, say 2 seconds. Then a goal of the 
scheduling mechanism should be to maximize the number of users who 
experience an average response time of 2 seconds or less.

System oriented criteria is the focused on effective and efficient utilization of the processor. 

• An example is throughput, i.e. the rate at which processes are completed. Thus, 
throughput is of concern to a system administrator but not to the user population.

On a single-user system, it probably is not important to achieve high processor utilization or 
high throughput as long as the responsiveness of the system to user applications is 
acceptable.
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Another dimension along which criteria can be classified is those that are 
performance related and those that are not directly performance related. 

Performance-related criteria are quantitative and generally can be readily measured.

• e.g. include response time and throughput.

Criteria that are not performance related are either qualitative in nature or do not 
lend themselves readily to measurement and analysis.

• e.g. predictability. We would like for the service provided to users to exhibit 
the same characteristics over time, independent of other work being 
performed by the system. 

• To some extent, this criterion can be measured, by calculating variances as a 
function of workload. However, this is not nearly as straightforward as 
measuring throughput or response time as a function of workload.
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This table summarizes key scheduling criteria.

These are interdependent, and it is impossible to optimize all of them simultaneously. 

• Thus, the design of a scheduling policy involves compromising among 
competing requirements; 

• The relative weights given the various requirements will depend on the 
nature and intended use of the system.

In most interactive operating systems, whether single user or time shared, adequate 
response time is the critical requirement. 
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In many systems, each process is assigned a priority and the scheduler will always 
choose a process of higher priority over one of lower priority.
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This figure illustrates the use of priorities. This figure is simplified and ignores the 
blocked and suspend queues of fig3.8a (chapter 3)

Instead of a single ready queue, we provide a set of queues, in descending order of 
priority:

• RQ0, RQ1, . . . RQn, with priority[RQi] > priority[RQj] for i<j.

NB: In UNIX and many other systems, larger priority values represent lower priority 
processes; 

• unless other-wise stated we follow that convention. 

• Some systems, such as Windows, use the opposite convention: a higher 
number means a higher priority.

When a scheduling selection is to be made, the scheduler will start at the highest-
priority ready queue (RQ0).

• If there are one or more processes in the queue, a process is selected using 
some scheduling policy. 

• If RQ0 is empty, then RQ1 is examined, and so on.
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One problem with a pure priority scheduling scheme is that lower-priority processes 
may suffer starvation.

• This will happen if there is always a steady supply of higher-priority ready 
processes. 

• If this behaviour is not desirable, the priority of a process can change with its 
age or execution history.
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This table may be difficult to read depending on the display – refer to table 9.3 in 
textbook

Animation on-click enlarges the image
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Selection function determines which process, among ready processes, is selected 
next for execution.

• May be based on priority, resource requirements, or the execution 
characteristics of the process. 

In the latter case, three quantities are significant:

•w = time spent in system so far, waiting

• e = time spent in execution so far

• s = total service time required by the process, including e;
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Decision mode specifies the instants in time at which the selection function is 
exercised.

There are two general categories: non-preemptive and preemptive
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Non-preemptive

In this case, once a process is in the Running state, it continues to execute until 

(a) it terminates or 

(b) it blocks itself to wait for I/O or to request some operating system service.

Preemptive:

The currently running process may be interrupted and moved to the Ready state by 
the operating system.

The decision to preempt may be performed 

• when a new process arrives; 

• when an interrupt occurs that places a blocked process in the Ready state; 

• or periodically, based on a clock interrupt.
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We can think of these as batch jobs, with the service time being the total execution 
time required. 

Movie button links to animation of Process Scheduling Algorithms at 
http://gaia.ecs.csus.edu/%7ezhangd/oscal/pscheduling.html
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The simplest scheduling policy is first-come-first-served (FCFS), 

• aka. first-in-first-out (FIFO) or a strict queuing scheme.

As each process becomes ready, it joins the ready queue.

When the currently running process ceases to execute, the process that has been in 
the ready queue the longest is selected for running.
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FCFS performs much better for long processes than short ones.

Another difficulty with FCFS is that it tends to favor processor-bound processes over 
I/O-bound processes.

FCFS is not an attractive alternative on its own for a uniprocessor system.

However, it is often combined with a priority scheme to provide an effective 
scheduler. 

Thus, the scheduler may maintain a number of queues, one for each priority 
level, and dispatch within each queue on a first-come-first-served basis.
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A straightforward way to reduce the penalty that short jobs suffer with FCFS is to use 
preemption based on a clock.

• The simplest such policy is round robin. 

Also known as time slicing, because each process is given a slice of time before being 
preempted.
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A clock interrupt is generated at periodic intervals.

• When the interrupt occurs, the currently running process is placed in the 
ready queue, and the next ready job is selected on a FCFS basis.
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The principal design issue is the length of the time quantum, or slice, to be used. 

If the quantum is very short, then short processes will move through the system 
relatively quickly. 

• BUT there is processing over-head involved in handling the clock interrupt 
and performing the scheduling and dispatching function.

• Thus, very short time quanta should be avoided.
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One useful guide is that the time quantum should be slightly greater than the time 
required for a typical interaction or process function. 

• If it is less, then most processes will require at least two time quanta. 

Processor-bound processes tend to receive an unfair portion of processor time, which 
results 

• in poor performance for I/O-bound processes, 

• inefficient use of I/O devices, 

• and an increase in the variance of response time.
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As per usual:

• New processes arrive and join the ready queue, which is managed on an 
FCFS basis.

• When a running process times out, it is returned to the ready queue.

• When a process is blocked for I/O, it joins an I/O queue. 

The new feature is an FCFS auxiliary queue to which processes are moved after being 
released from an I/O block. 

When a dispatching decision is to be made, processes in the auxiliary queue get 
preference over those in the main ready queue.

When a process is dispatched from the auxiliary queue, it runs no longer than a time 
equal to the basic time quantum minus the total time spent running since it was last 
selected from the main ready queue. 

Performance studies indicate that this approach is indeed superior to round robin in 
terms of fairness.
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A non-preemptive policy in which the process with the shortest expected processing 
time is selected next.

• Thus a short process will jump to the head of the queue past longer jobs.
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Overall performance is significantly improved in terms of response time. 

• However, the variability of response times is increased, especially for longer 
processes, and thus predictability is reduced.

One difficulty with the SPN policy is the need to know or at least estimate the 
required processing time of each process. 

• For batch jobs, the system may require the programmer to estimate the 
value and supply it to the operating system. 

• If the programmer’s estimate is substantially under the actual running time, 
the system may abort the job.
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The size of the coefficient as a function of its position in the expansion is shown here.

The larger the value of α, the greater the weight given to the more recent 
observations. 

For α = 0.8, virtually all of the weight is given to the four most recent 
observations, whereas for α = 0.2, the averaging is effectively spread out over 
the eight or so most recent observations. 

The advantage of using a value of α close to 1 is that the average will quickly reflect a 
rapid change in the observed quantity.

The disadvantage is that if there is a brief surge in the value of the observed quantity 
and it then settles back to some average value, the use of a large value of α will result 
in jerky changes in the average.
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Figure 9.9 compares simple averaging with exponential averaging (for two different 
values of α). 

Here (Figure 9.9a), the observed value begins at 1, grows gradually to a value of 10, 
and then stays there. 
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While here (Figure 9.9b), the observed value begins at 20, declines gradually to 10, 
and then stays there. 

In both cases, we start out with an estimate of S1 = 0.

• This gives greater priority to new processes. 

Note that exponential averaging tracks changes in process behavior faster than does 
simple averaging and that the larger value of α results in a more rapid reaction to the 
change in the observed value.
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A pre-emptive version of SPN. 

In this case, the scheduler always chooses the process that has the shortest expected 
remaining processing time.

SRT does not have the bias in favor of long processes found in FCFS. 

• Unlike round robin, no additional interrupts are generated, reducing 
overhead. 

• On the other hand, elapsed service times must be recorded, contributing to 
overhead. 

SRT should also give superior turnaround time performance to SPN, because a short 
job is given immediate preference to a running longer job.

42



A smaller denominator yields a larger ratio so that shorter jobs are favored, but aging 
without service increases the ratio so that a longer process will eventually get past 
competing shorter jobs.

As with SRT and SPN, the expected service time must be estimated to use highest 
response ratio next (HRRN).
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If we have no indication of the relative length of various processes, then none of SPN, SRT, and HRRN 
can be used.

Another way of establishing a preference for shorter jobs is to penalize jobs that have been running 
longer.

•IE if we cannot focus on the time remaining to execute, let’s focus on the time spent in 
execution so far.

Scheduling is done on a preemptive (at time quantum) basis, and a dynamic priority mechanism is 
used.

When a process first enters the system, it is placed in RQ0 (refer to Figure 9.4).

• After its first preemption, when it returns to the Ready state, it is placed in RQ1.

• Each subsequent time that it is preempted, it is demoted to the next lower-priority queue.

A short process will complete quickly, without migrating very far down the hierarchy of ready queues. 

• A longer process will gradually drift downward.

• Thus, newer, shorter processes are favored over older, longer processes.

Within each queue, except the lowest-priority queue, a simple FCFS mechanism is used. 

• Once in the lowest-priority queue, a process cannot go lower, but is returned to this queue 
repeatedly until it completes execution.

• Thus, this queue is treated in round-robin fashion.
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A number of variations of this scheme exist.

A simple version is to perform preemption in the same fashion as for round robin: at periodic 
intervals.

Our example shows this (Figure 9.5 and Table 9.5) for a quantum of one time unit. 

Note that in this case, the behavior is similar to round robin with a time quantum of 
1.

But the turnaround time of longer processes can stretch out alarmingly. 

• it is possible for starvation to occur if new jobs are entering the system frequently.

To compensate for this, we can vary the preemption times according to the queue:

•A process scheduled from RQ0 is allowed to execute for one time unit and then is 
preempted; 

• a process scheduled from RQ1 is allowed to execute two time units, and so on. 

In general, a process scheduled from RQi is allowed to execute 2i time units before 
preemption. 

• Even with the allowance for greater time allocation at lower priority, a longer 
process may still suffer starvation.

A possible remedy is to promote a process to a higher-priority queue after it spends a certain 
amount of time waiting for service in its current queue.
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The performance of various scheduling policies is a critical factor in the choice of a 
scheduling policy. 

But, it is impossible to make definitive comparisons because relative performance will 
depend on a variety of factors,

• But it is possible to make some general conclusions

For any scheduling discipline that chooses the next item to be served independent of 
service time obeys the above relationship

46



If scheduling is done on the basis of priority and if processes are assigned to a priority 
class on the basis of service time, then differences do emerge. 

This slide shows the formulas that result when we assume two priority classes, with 
different service times for each class.

λ refers to the arrival rate.

These results can be generalized to any number of priority classes. 

Note: the formulas differ for nonpreemptive versus preemptive scheduling. 

In the preemptive , it is assumed that a lower-priority process is immediately 
interrupted when a higher-priority process becomes ready.
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This figure shows the overall result. 

By giving preference to shorter jobs, the average normalized turnaround time is 
improved at higher levels of utilization. 

The improvement is greatest with the use of preemption. 

Notice, however, that overall performance is not much affected.
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Significant differences emerge when we consider the two priority classes separately. 

This figure shows the results for the higher-priority, shorter processes. 

For comparison, the upper line on the graph assumes that priorities are not used but 
that we are simply looking at the relative performance of half of all processes that 
have the shorter processing time.

• The other two lines assume that these processes are assigned a higher 
priority.

When the system is run using priority scheduling without preemption, the 
improvements are significant. 

• They are even more significant when preemption is used.
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This shows the same analysis for the lower-priority, longer processes.

As expected, such processes suffer a performance degradation under priority 
scheduling.
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Some of the difficulties of analytic modelling are over-come by using discrete-event simulation, which allows a wide range of 
policies to be

modelled.

The disadvantage of simulation is that the results for a given “run” only apply to that particular collection of processes under
that particular set of assumptions. Nevertheless, useful insights can be gained.

This figure shows the result of one study. Figure 9.14 shows the normalized turnaround time, and Figure 9.15 shows the average 
waiting time. 

Looking at the turnaround time, we can see that the performance of FCFS is very unfavorable, 

• with one-third of the processes having a normalized turnaround time greater than 10 times the service time (these 
were the shortest)

• On the other hand, the absolute waiting time is uniform, as is to be expected because scheduling is independent of 
service time. 

The figures show round robin using a quantum of one time unit. 

• Round robin yields a normalized turnaround time of about 5 for all processes, treating all fairly, except for the 
shortest processes, which execute in less than one quantum, 

• Shortest process next performs better than round robin, except for the shortest processes. 

• Shortest remaining time, the preemptive version of SPN, performs better than SPN except for the longest 7% of all 
processes.

We have seen that, among nonpreemptive policies, FCFS favors long processes and SPN favors short ones.

Highest response ratio next is intended to be a compromise between these two effects, and this is indeed confirmed in the 
figures.

Finally, the figure shows feedback scheduling with fixed, uniform quanta in each priority queue.

• As expected, FB performs quite well for short processes.
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From the user’s point of view, the concern is not how a particular process performs 
but rather how his or her set of processes, which constitute a single application, 
performs.

It would be attractive to make scheduling decisions on the basis of these process 
sets.

• This approach is generally known as fair-share scheduling. 

• The concept can be extended to groups of users, even if each user is 
represented by a single process. 
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This figure is an example in which process A is in one group and process B and process C are in a 
second group, 

• with each group having a weighting of 0.5.

Assume that all processes are processor bound and are usually ready to run.

All processes have a base priority of 60. 

Processor utilization is measured as follows: 

• The processor is interrupted 60 times per second;

• during each interrupt, the processor usage field of the currently running process is 
incremented, as is the corresponding group processor field.

• Once per second, priorities are recalculated.

In the figure, process A is scheduled first.

• At the end of one second, it is pre-empted. 

• Processes B and C now have the higher priority, and process B is scheduled.

At the end of the second time unit, process A has the highest priority. 

Note that the pattern repeats: 

• the kernel schedules the processes in order:A, B,A, C,A, B, and so on. 

• Thus, 50% of the processor is allocated to process A, which constitutes one group, and 50% 
to processes B and C, which constitute another group.
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In this section we examine traditional UNIX scheduling, which is used in both SVR3 
and 4.3 BSD UNIX.

• Primarily targeted at the time-sharing interactive environment.

The scheduling algorithm is designed to provide good response time for interactive 
users while ensuring that low-priority background jobs do not starve. 

• Although this algorithm has been replaced in modern UNIX systems, the 
approach because is representative of practical time-sharing scheduling 
algorithms.
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The traditional UNIX scheduler employs multilevel feedback using round robin within 
each of the priority queues.

The system makes use of 1-second preemption.

• ie if a running process does not block or complete within 1 second, it is 
preempted. 

Priority is based on process type and execution history.
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The priority of each process is recomputed once per second, at which time a new 
scheduling decision is made. 

• The base priority is to divides all processes into fixed bands of priority levels. 

The CPU and nice components are restricted to prevent a process from migrating out 
of its assigned band (assigned by the base priority level). 

These bands are used to optimize access to block devices (e.g., disk) and to allow the 
operating system to respond quickly to system calls. 

In decreasing order of priority, the bands are

• Swapper

• Block I/O device control

• File manipulation

• Character I/O device control

• User processes
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This figure shows an example of process scheduling 

Processes A, B, and C are created at the same time with base priorities of 60 (ignoring
the nice value). 

The clock interrupts the system 60 times per second and increments a counter for the 
running process. 

The example assumes that none of the processes block themselves and that no other 
processes are ready to run. 
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