Operating Systems:
Internals and Design Principles, 6/E
William Stallings

Chapter 4
Threads, SMP, and
Microkernels

These slides are intended to help a teacher develop a presentation. This PowerPoint
covers the entire chapter and includes too many slides for a single delivery. Professors
are encouraged to adapt this presentation in ways which are best suited for their
students and environment.



-3
@Eﬁ \ Roadmap

- Threads: Resource ownership and
execution
« Symmetric multiprocessing (SMP).
* Microkernel

» Case Studies of threads and SMP:

— Windows
— Solaris
— Linux

v




,~Q\
§§A Processes and Threads

* Processes have two characteristics:

— Resource ownership - process includes a
virtual address space to hold the process
image

— Scheduling/execution - follows an execution
path that may be interleaved with other
processes

* These two characteristics are treated
independently by the operating system

A

E:




,~Q\
% Processes and Threads

* The unit of dispatching is referred to as a
thread or lightweight process

* The unit of resource ownership is referred
to as a process or task

A




2
gﬁ:@ ' Multithreading

- The ability of an ; O
OS to support — i -
multiple, e
concurrent paths § $ ]88y B3
of execution within N =
a single process. -

Figure 4.1 Threads and Processes [ANDE97]

Multithreading refers to the ability of an OS to support multiple, concurrent paths of
execution within a single process.




%E"\ Single Thread
1 \

Approaches
« MS-DOS supports a 3 N TY
single user process O 3
and a single thread. 10K 3 33
* Some UNIX, support == e
multiple user §

Figure 4.1 Threads and Processes [ANDES7]

processes but only
support one thread
per process

&

Animated Slide

Onload Enlarges top-left to discuss DOS
Click1: Enlarges bottom-left for Unix

Single Threaded approach: The traditional approach of a single thread of execution
per process, in which the concept of a thread is not recognized, examples are

*MS DOS (single process, single thread)

*Unix (multiple, single threaded processes)



3
&%@ ' Multithreading

- Java run-time o] 5
environment is a O =
single process with 5 S 33 33
multiple threads R

* Multiple processes fonene

Figure 4.1 Threads and Processes [ANDE97]

and threads are found
in Windows, Solaris,

and many modern |
versions of UNIX %

&

Animated Slide

Onload: Emphasis on top-right and JRE (single process, multiple thread),

Click 1: Emphasis on multiple processes with multiple threads — this is the main topic
of this chapter

JRE is an example of a system of one process with multiple threads.

Of main interest in this chapter is the use of multiple processes, each of which
support multiple threads.

Examples include:
* Windows,
*Solaris,

*and many modern versions of UNIX.



3

\
&Eﬁ Processes

» Avirtual address space which holds the
process image

* Protected access to
— Processors,
— Other processes,
— Files,
— I/O resources

s z

In a multithreaded environment, a process is defined as the unit of resource
allocation and a unit of protection.



Process

« Each thread has
— An execution state (running, ready, etc.)
— Saved thread context when not running
— An execution stack

— Some per-thread static storage for local
variables

— Access to the memory and resources of its
process (all threads of a process share this)

Within a process, there may be one or more threads, each with the following:

%’\One or More Threads in
® \

* A thread execution state (Running, Ready, etc.).

* A saved thread context when not running;

one way to view a thread is as an independent program counter operating within a
process.



R

@Eﬁﬁ \ One view...

* One way to view a thread is as an
independent program counter operating
within a process.

Vs

10



A \
Eﬁﬁ Threads vs. processes

Single-Threaded Multithreaded
Process Model Process Model
—————— Thread Thread Thread
| | rommmmey i gl
rm———m i Il Thread || || Thread || |1 Threaa |i
| Process | | User | i} Control || |} Control || || Control |
| Control | ! Stack | It Block Il || Block Il I Block Il
| Block : 1 | IPESESE ST I EEEEEE |
o | —— 1y i i h il
------- | : I procees | User 1 User i 1 User {f
1 U ') Kernel ! i Process | 1 ser. (G S°T (W ST g
] 2 ] ! | Control | :} Stack :: Stack |1 :: Stack
| AN | - | Block || i ioh i
=1 e B R
Submtntntutnty :1 1 :I 1l :: "
| User | i} Kernel 8 |} Kernel i || Kernel -
| Address { 1l Stack :: || Stack i || Stack t
1 Space ! h i h uh 1]
------- U (IRRyyy | [ Ry | |y |

: Figure 4.2 Single Threaded and Multithreaded Process Models %

Distinction between threads and processes from the point of view of process management.

In a single-threaded process model, the representation of a process includes
* its process control block
* user address space,
« user and kernel stacks to manage the call/return behaviour of the execution of the process.

While the process is running, it controls the processor registers. The contents of these registers are
saved when the process is not running.

In a multithreaded environment,

* there is still a single process control block and user address space associated with the
process,

* but separate stacks for each thread,

« as well as a separate control block for each thread containing register values, priority, and
other thread-related state information.

Thus, all of the threads of a process share the state and resources of that process.

* They reside in the same address space and have access to the same data.

* When one thread alters an item of data in memory, other threads see the results if and
when they access that item.

*If one thread opens a file with read privileges, other threads in the same process can also
read from that file.



s
%ﬁm \ Benefits of Threads

» Takes less time to create a new thread
than a process

Less time to terminate a thread than a
process

Switching between two threads takes less
time that switching processes

Threads can communicate with each other
— without invoking the kernel

ﬁ &

If there is an application or function that should be implemented as a set of related
units of execution,

L]

it is far more efficient to do so as a collection of threads - rather than a
collection of separate processes.

12



Single-User System

» Foreground and background work
» Asynchronous processing

» Speed of execution

* Modular program structure

%’\ Thread use in a
@" \

&

Foreground and background work

e.g. Spreadsheet
—one thread looking after display
-Another thread updating results of formulae

Asynchronous processing
E.G. protection against power failure within a word processor,
-A thread writes random access memory (RAM) buffer to disk once every minute.
- this thread schedules itself directly with the OS;

- no need for fancy code in the main program to provide for time checks or to
coordinate input and output.

Speed of execution
- On thread can compute one batch of data while another thread reading the next batch from
a device.
- On a multiprocessor system, multiple threads from the same process may be able to
execute simultaneously.

- Even though one thread may be blocked for an 1/0O operation to read in a batch of data,
another thread may be executing.

Modular program structure

- Threads make it easier to design programs which involve a variety of activities or a variety of
sources and destinations of input and output.

13



3

%ﬁ \ Threads
% \

« Several actions that affect all of the
threads in a process

— The OS must manage these at the process
level.

+ Examples:

— Suspending a process involves suspending all
threads of the process

— Termination of a process, terminates all
threads within the process

Suspension involves swapping the address space of one process out of main memory
to make room for the address space of another process.

Because all threads in a process share the same address space, all threads
are suspended at the same time.

Similarly, termination of a process terminates all threads within that process.



s A .
% v Activities similar
® to Processes
* Threads have execution states and may

synchronize with one another.
— Similar to processes

* We look at these two aspects of thread
functionality in turn.
— States
— Synchronisation

&

15



Y~Q\
@Eﬁ Thread Execution States

« States associated with a change in thread

state
— Spawn (another thread)
— Block
* Issue: will blocking a thread block other, or all,
threads
— Unblock
— Finish (thread)
 Deallocate register context and stacks %

A

A significant issue is whether the blocking of a thread results in the blocking of the
entire process.

If one thread in a process is blocked, does this prevent the running of any
other thread in the same process even if that other thread is in a ready state?

Clearly, some of the flexibility and power of threads is lost if the one blocked thread
blocks an entire process.



2
RS Example:
&

Remote Procedure Call

» Consider:

— A program that performs two remote
procedure calls (RPCs)

— to two different hosts
— to obtain a combined result.

$

A

17



% \ RPC
¥ Using Single Thread

Time ——p

Request Request

Process 1 L ]

—(Server)—  —p(Server)—

(a) RPC Using Single Thread \E

The results are obtained in sequence,

so that the program has to wait for a response from each server in turn.

18



%ﬂ’\ RPC Using
" One Thread per Server

$

Thread B (Process 1)

/T

RPC

Request

(b) RPC Using One Thread per Server (on a uniprocessor)

EXZZZ] Blocked, waiting for response to RPC
I Blocked, waiting for processor, which is in use by Thread B
[ Running

Rewriting the program to use a separate thread for each RPC results in a substantial
speedup.

Note that if this program operates on a uniprocessor, the requests must be generated
sequentially and the results processed in sequence;

however, the program waits concurrently for the two replies.



Eﬁa\ Multithreading
@ = ona Uniprocessor

Time

vo Request Time quantum
request complete expires

Thread A (Process 1) [ u T IL ]

Thread B (Process 1) [ I I ]

/'

| E— s
Thread C (Process 2) Time q
expires /'
Process
created

N Blocked [ Ready [— Running

Figure 44 Multithreading Example on a Uniprocessor E
- —

Vil

On a uniprocessor, multiprogramming enables the interleaving of multiple threads
within multiple processes.

In the example,
- three threads in two processes are interleaved on the processor.

- Execution passes from one thread to another either when the currently
running thread is blocked or its time slice is exhausted.



@Eﬁﬁ " Adobe PageMaker

4
&

\E
W Figure 4.5 Thread Structure for Adobe PageMaker

An example of the use of threads is the Adobe PageMaker application running under
a shared system.

Three threads are always active:
* an event-handling thread,
* a screen-redraw thread,

* a service thread.

21



,~Q\
3

Categories of
Thread Implementation

» User Level Thread (ULT)

» Kernel level Thread (KLT) also called:
— kernel-supported threads
— lightweight processes.

A

22



»Q\
@Eﬁﬁ User-Level Threads

« All thread § § %
management is done \ |/
by the application T

User
Space

* The kernel is not
aware of the
existence of threads @

Vs

Kernel
Space

23



Thread and Process States

@é{Relationships between ULT
\

Bi
is
Figure 4.7 Examples of the Relationships Between User-Level Thread States and Process States

24



s
&Eﬁ \ Kernel-Level Threads

» Kernel maintains context
information for the
uer  process and the threads

>

Space
Klml — No thread management
Space done by application

* Scheduling is done on a
thread basis

o * Windows is an example
(b) Pure kernel-level of this approach

z

The kernel maintains context information for the process as a whole and for
individual threads within the process.

Scheduling by the kernel is done on a thread basis.

25



,~Q\
@Eﬁ Advantages of KLT

* The kernel can simultaneously schedule

multiple processors.

* If one thread in a process is blocked, the
kernel can schedule another thread of the
same process.

» Kernel routines themselves can be
multithreaded.

A

multiple threads from the same process on

E:

26



s
Eﬁ \ Disadvantage of KLT
% ‘

» The transfer of control from one thread to
another within the same process requires
a mode switch to the kernel

27



h@\
@Eﬁj Combined Approaches

» Thread creation done in T S
the user space \ |/ _

« Bulk of scheduling and ==l -
synchronization of Kernel
threads by the SRORO e
application

H @

« Example is Solaris

A

In a combined approach, multiple threads within the same application can runin
parallel on multiple processors,

(¢) Combined

and a blocking system call need not block the entire process.

If properly designed, this approach should combine the advantages of the pure ULT
and KLT approaches while minimizing the disadvantages.



Thread and Processes

Table 4.2 Relationship Between Threads and Processes

%Q\ Relationship Between
1 \

Threads:Processes Description Example Systems

1:1 Each thread of executionisa  Traditional UNIX
unique process with itsown  implementations
address space and resources.

M:1 A process defines an address ~ Windows NT, Solaris, Linux,
space and dynamic resource ~ OS/2, 0S/390, MACH
ownership. Multiple threads
may be created and executed
within that process.

1:M A thread may migrate from Ra (Clouds), Emerald
one process environment to
another. This allows a thread
to be easily moved among
distinct systems.
M:N Combines attributes of M:1 TRIX

and 1:M cases.

el

The concepts of resource allocation and dispatching unit have traditionally been
embodied in the single concept of the process; that is, as a 1 : 1 relationship between
threads and processes.

There has been much interest in providing for multiple threads within a single
process, which is a many-to-one relationship

However, as the table shows, the other two combinations have also been
investigated, namely,

*a many-to-many relationship and

*a one-to-many relationship.



-3
@Eﬁ \ Roadmap

» Threads: Resource ownership and
execution

= Symmetric multiprocessing (SMP).

* Microkernel

» Case Studies of threads and SMP:

— Windows
— Solaris
— Linux

..

30



2
E‘Sﬁ Traditional View

 Traditionally, the computer has been
viewed as a sequential machine.

— A processor executes instructions one at a
time in sequence

— Each instruction is a sequence of operations
» Two popular approaches to providing

parallelism
— Symmetric MultiProcessors (SMPs) "
— Clusters (ch 16) =

Traditionally, the computer has been viewed as a sequential machine.

Most computer programming languages require the programmer to specify
algorithms as sequences of instructions.

A processor executes programs by executing machine instructions in sequence and
one at a time. Each instruction is executed in a sequence of operations

(fetch instruction, fetch operands, perform operation, store results).

This view of the computer has never been entirely true.

As computer technology has evolved and as the cost of computer hardware has
dropped, computer designers have sought more and more opportunities for
parallelism, usually to improve performance and, in some cases, to improve reliability.

the two most popular approaches to providing parallelism by replicating processors:

* symmetric multiprocessors (SMPs) and

* clusters.

31



%?\ Categories of
@ | Computer Systems

» Single Instruction Single Data (SISD)
stream
— Single processor executes a single instruction
stream to operate on data stored in a single
memory
« Single Instruction Multiple Data (SIMD)
stream

— Each instruction is executed on a different set
of data by the different processors -4

ﬁ &

It is useful to see where SMP architectures fit into the overall category of parallel
processors.




%Q\Categories of Computer
\

1 Systems

* Multiple Instruction Single Data (MISD) stream
(Never implemented)

— A sequence of data is transmitted to a set of
processors, each of execute a different
instruction sequence

* Multiple Instruction Multiple Data (MIMD)

— A set of processors simultaneously execute
different instruction sequences on different
data sets

A

E:

33



%ﬁ\ Parallel Processor
" Architectures

Parallel Processor

SIMD MIMD
(single instruction (multiple instruction
multiple data stream) multiple data stream)

e

Shared-Memory Distributed-Memory
(tightly coupled) (loosely coupled)

Master/Slave Symmetric Clusters

Multiprocessors
(SMP) %
‘g Figure 4.8 Parallel Processor Architectures

With the MIMD organization, the processors are general purpose, because they must

be able to process all of the instructions necessary to perform the appropriate data
transformation.

MIMDs can be subdivided by the means in which the processors communicate.

* If the processors each have a dedicated memory, then each processing
element is a self-contained computer.

* Such a system is known as a cluster, or multicomputer.

*If the processors share a common memory, then each processor accesses
programs and data stored in the shared memory, and processors
communicate with each other via that memory;

* sucha system is known as a shared-memory multiprocessor.

34



3 .
A Symmetric
B

! Multiprocessing

®
« Kernel can execute on any processor
— Allowing portions of the kernel to execute in
parallel
 Typically each processor does self-
scheduling from the pool of available
process or threads

oy :

In a symmetric multiprocessor (SMP),

* the kernel can execute on any processor, and

* typically each processor does self-scheduling from the pool of available
processes or threads.

The kernel can be constructed as multiple processes or multiple threads, allowing
portions of the kernel to execute in parallel. This complicates the OS.

* [t must ensure that two processors do not choose the same process and
that processes are not somehow lost from the queue.

* Techniques must be employed to resolve and synchronize claims to
resources.

35



%A \ Typical
¥ SMP Organization

Processor

[ caan]) =/

System Bus

o
Vo Adapter
Subsystem

Main
Memory

vo
Adapter

vo
Adapter
—
ﬁ Figure 4.9 Symmetric Multiprocessor Organization

There are multiple processors, each of which contains its own

i

control unit,
arithmetic-logic unit, and

registers.

Each processor has access to a shared main memory and the 1/0 devices through
some form of interconnection mechanism; a shared bus is a common facility.

The processors can communicate with each other through memory (messages and
status information left in shared address spaces).

It may also be possible for processors to exchange signals directly. The
memory is often organized so that multiple simultaneous accesses to separate

blocks of memory are possible.

36



%%’\ Multiprocessor OS
@ | Design Considerations

* The key design issues include

— Simultaneous concurrent processes or
threads

— Scheduling

— Synchronization

— Memory Management

— Reliability and Fault Tolerance

oy :

Talk through each of the issues
Simultaneous concurrent processes or threads:

* Kernel routines need to be re-entrant to allow several processors to execute the same kernel code
simultaneously.

* With multiple processors executing the same or different parts of the kernel, kernel tables and
management structures must be managed properly to avoid deadlock or invalid operations.

Scheduling:

* Scheduling may be performed by any processor, so conflicts must be avoided.

* If kernel-level multithreading is used, then the opportunity exists to schedule multiple threads from
the same process simultaneously on multiple processors.

Synchronization:

» With multiple active processes having potential access to shared address spaces or shared I/O
resources, care must be taken to provide effective synchronization.

* Synchronization is a facility that enforces mutual exclusion and event ordering.
* A common synchronization mechanism used in multiprocessor operating systems is locks

Memory management:

* Memory management on a multiprocessor must deal with all of the issues found on uniprocessor
computers.

*The also OS needs to exploit the available hardware parallelism, such as multiported memories, to
achieve the best performance.

* The paging mechanisms on different processors must be coordinated to enforce consistency when
several processors share a page or segment and to decide on page replacement.

Reliability and fault tolerance:

* The OS should provide graceful degradation in the face of processor failure.

* The scheduler and other portions of the OS must recognize the loss of a processor and restructure
management tables accordingly.

37



)
Q,E’r:p \ Roadmap

» Threads: Resource ownership and
execution

« Symmetric multiprocessing (SMP).

- Microkernel

» Case Studies of threads and SMP:

— Windows
— Solaris
— Linux

..

38



2

@E}%A Microkernel

« A microkernel is a small OS core that
provides the foundation for modular
extensions.

 Big question is how small must a kernel be
to qualify as a microkernel
— Must drivers be in user space?

* In theory, this approach provides a high

&

degree of flexibility and modularity. %

Also, whether to run nonkernel operations in kernel or user space, and whether to

keep existing subsystem code (e.g., a version of UNIX) or

start from scratch.

The microkernel approach was popularized by its use in the Mach OS, which is now

the core of the Macintosh Mac OS X operating system.

A number of products now boast microkernel implementations, and this general
design approach is likely to be seen in most of the personal computer, workstation,

and server operating systems developed in the near future.

39



) Kernel Architecture

User c d plv

Mode Visers . el
1

t

File System ; : : : u

t e s a

—— User saefali]s|?

Interprocess Communication Mode P rfefs|m

Kernel . vlv)r =

Mode 1/O and Device Management bz ¥ ; vile

s r € r

s r ¥

Virtual Memory

ﬁl

S . Kernel [
) 7 Y I
HARDWARE HARDWARE
(a) Layered kernel (b) Microkernel
Figure 4.10 Kernel Architecture
— —

Figure A:
Operating systems developed in the mid to late 1950s were designed with little concern about structure.
*The problems caused by mutual dependence and interaction were grossly underestimated.

*In these monolithic operating systems, virtually any procedure can call any other procedure — the
approach was unsustainable as operating systems grew to massive proportions.

Modular programming techniques were needed to handle this scale of software development.

* layered operating systems were developed in which functions are organized hierarchically and
interaction only takes place between adjacent layers.

*M ost or all of the layers execute in kernel mode.
PROBLEM:

*Major changes in one layer can have numerous effects on code in adjacent layers - many difficult to
trace

*And security is difficult to build in because of the many interactions between adjacent layers.
Figure B
In a Microkernel - only absolutely essential core OS functions should be in the kernel.

* Less essential services and applications are built on the microkernel and execute in user mode.

*Common characteristic is that many services that traditionally have been part of the OS are now
external subsystems that interact with the kernel and with each other;

* these include device drivers, file systems, virtual memory manager, windowing system, and security
services.

The microkernel functions as a message exchange:
* It validates messages,
*passes them between components,
* and grants access to hardware.
The microkernel also performs a protection function;
it prevents message passing unless exchange is allowed.

40



Memory Management

» Low-level memory management - Mapping
each virtual page to a physical page frame

— Most memory management tasks occur in
user space

Eﬁa\ Microkernel Design:
1 \

Application Pager

a -

page Address-space
fault feaume: function call

\ /
Microkernel
——
& Figure 4.11 Page Fault Processing

The microkernel has to control the hardware concept of address space to make it
possible to implement protection at the process level.

Providing the microkernel is responsible for mapping each virtual page to a physical
frame, the majority of memory management can be implemented outside the kernel

(protection of the address space of one process from another and the page
replacement algorithm and other paging logic etc)

41



% Microkernel Design:
¥ Interprocess Communication

« Communication between processes or
threads in a microkernel OS is via
messages.

+ A message includes:

— A header that identifies the sending and
receiving process and

— A body that contains direct data, a pointer to
a block of data, or some control information
about the process. Ze

oy :

The basic form of communication between processes or threads in a microkernel OS
is messages.

A message includes:
* A header that identifies the sending and receiving process and

* A body that contains direct data, a pointer to a block of data, or some
control information about the process.

Typically, we can think of IPC as being based on ports associated with processes.

42



% Microkernal Design:
*I/0 and interrupt management

« Within a microkernel it is possible to
handle hardware interrupts as messages
and to include /O ports in address spaces.
— a particular user-level process is assigned to

the interrupt and the kernel maintains the
mapping.

With a microkernel architecture, it is possible to handle hardware interrupts as
messages and to include I/O ports in address spaces.

43



LR Benefits of a
@ ' Microkernel Organization
» Uniform interfaces on requests made by a
process.
« Extensibility
* Flexibility
« Portability
* Reliability
* Distributed System Support
» Object Oriented Operating Systems o

Uniform Interfaces
* Imposes a uniform interface on requests made by a process.

* Processes need not distinguish between kernel-level and user-level services because all such services are provided
by means of message passing.

Extensibility is facilitated allowing the addition of new services as well as the provision of multiple services in the same
functional area.

* when a new feature is added, only selected servers need to be modified or added.
* The impact of new or modified servers is restricted to a subset of the system.
* Modifications do not require building a new kernel.
Flexibility
* Existing features can be subtracted to produce a smaller, more efficient implementation.
« If features are made optional, the base product will appeal to a wider variety of users.
Portability
* All or at least much of the processor-specific code is in the microkernel.
. Thus! changes needed to port the system to a new processor are fewer and tend to be arranged in logical
groupings.
Reliability
* A small microkernel can be rigorously tested.

* Its use of a small number of application programming interfaces (APIs) improves the chance of producing quality
code for the OS services outside the kernel.

Distributed System Support

* When a message is sent from a client to a server process, the message must include an identifier of the requested
service.

* If a distributed system (e.g., a cluster) is configured so that all processes and services have unique identifiers, then
in effect there is a single system image at the microkernel level.

* A process can send a message without knowing on which computer the target service resides.
Object Oriented Operating Systems

* An object-oriented approach can lend discipline to the design of the microkernel and to the development of
modular extensions to the OS.

44



B

@Eﬁ \ Roadmap

» Threads: Resource ownership and
execution

* Microkernel
- Case Studies of threads and SMP:
— Windows
— Solaris
— Linux

V.

« Symmetric multiprocessing (SMP).

45



to Processes

+ Differences between different OS’s
support of processes include
— How processes are named
— Whether threads are provided
— How processes are represented
— How process resources are protected

— What mechanisms are used for inter-process
communication and synchronization

— How processes are related to each other

&

%{"\ Different Approaches
® \

E:

46



s
\
%TA Windows Processes

* Processes and services provided by the
Windows Kernel are relatively simple and
general purpose
— Implemented as objects

— An executable process may contain one or
more threads

— Both processes and thread objects have built-
in synchronization capabilities

The native process structures and services provided by the Windows Kernel are
relatively simple and general purpose,

allowing each OS subsystem to emulate a particular process structure and
functionality.



%ﬁ\ Relationship between
% Process and Resources

Access

token

Virtual address descriptors

pry B B pe

Available

Handle Table

Handlel !

Handle3

1

i

1
Handle2 i —y

i

i

i

ﬁ Figure 4.12 A Windows Process and Its Resources

This figure shows a single thread.

In addition, the process has access to a file object and to a section object that defines a
section of shared memory.

TOKEN
Each process is assigned a security access token, called the primary token of the process.

When a user first logs on, Windows creates an access token that includes the security ID for
the user.

Every process that is created by or runs on behalf of this user has a copy of this
access token.

The token is used by windows to validate the user’s ability to access secured objects or to
perform restricted functions on the system and on secured objects.

The access token controls whether the process can change its own attributes.

In this case, the process does not have a handle opened to its access token. If the process
attempts to open such a handle, the security system determines whether this is permitted
and therefore whether the process may change its own attributes.

ADDRESS SPACE
A series of blocks that define the virtual address space currently assigned to this process.

The process cannot directly modify these structures but must rely on the virtual memory
manager, which provides a memory allocation

service for the process.

OBJECT TABLE

The process includes an object table, with handles to other objects known to this process.
One handle exists for each thread contained in this object.

48



&Eﬁj Windows Process Object

Object Type Process

Object Body
Attributes

Services

;! (a) Process object

Each Windows process is represented by an object whose general structure is shown
in this figure

The object-oriented structure of Windows facilitates the development of a general
purpose process facility.

Windows makes use of two types of process-related objects: processes and threads.

A process corresponds to a user job or application that owns resources, such as
memory, and opens files.

A thread is a dispatchable unit of work that executes sequentially and is
interruptible, so that the processor can turn to another thread.

49



@Eﬁﬁ Windows Thread Object

Object Type

Object Body
Attributes

' 2 ; (b) Thread object

This figure depicts the object structure for a thread object.

A Windows process must contain at least one thread to execute.

That thread may then create other threads.

In a multiprocessor system, multiple threads from the same process may
execute in parallel.

50



s

Thread States

Runnable
. Standby
Preempted
Ready Runni

S

4 4

J A\ /
Resource Unblock/Resume Block/ | Terminate
Available esource Available o
Suspend
Transition s—————————  Waiting Terminated

Unblock
Resource Not Available

Not Runnable

Figure 4.14 Windows Thread States

An existing Windows thread is in one of six states

51



Q\
Q/%TJ Windows SMP Support

+ Threads can run on any processor
— But an application can restrict affinity
+ Soft Affinity

— The dispatcher tries to assign a ready thread to
the same processor it last ran on.

— This helps reuse data still in that processor’s
memory caches from the previous execution of
the thread.

+ Hard Affinity
— An application restricts threads to certain -]

; processor =

The threads of any process, including those of the executive, can run on any
processor.

In the absence of affinity restrictions, the microkernel assigns a ready thread
to the next available processor.

As a default, the microkernel uses the policy of soft affinity in assigning threads to
processors: The dispatcher tries to assign a ready thread to the same processor it last
ran on. This helps reuse data still in that processor’s memory caches from the
previous execution of the thread.

It is possible for an application to restrict its thread execution to certain processors
(hard affinity).

52



2

@Eﬁ \ Solaris

» Solaris implements multilevel thread
support designed to provide flexibility in
exploiting processor resources.

* Processes include the user’s address
space, stack, and process control block

A

53



o
@/xﬁ Solaris Process

» Solaris makes use of four separate thread-
related concepts:

— Process: includes the user’s address space,
stack, and process control block.

— User-level threads: a user-created unit of
execution within a process.

— Lightweight processes: a mapping between
ULTs and kernel threads.

— Kernel threads %

&

Solaris makes use of four separate thread-related concepts:

¢ Process:
- includes the user’s address space, stack, and process control block.
e User-level threads:

- Implemented through a threads library in the address space of a
process (invisible to the OS).

- A user-level thread (ULT) is a user-created unit of execution within a
process.

e Lightweight processes:
- Can be viewed as a mapping between ULTs and kernel threads.
-Each LWP supports ULT and maps toone kernel thread.

-- LWPs are scheduled by the kernel independently and may execute in
parallel on multiprocessors.

¢ Kernel threads:

Fundamental entities that can be scheduled and dispatched to run on
one of the system processors.

54



%‘\ Relationship between
@ | Processes and Threads

Process

user user
—I thread I— —I thread I_
Lightweight Lightweight
process (LWP) [T| process (LWP)

syscall() l f l ? syscall()

Kernel Kernel

thread thread
—' System calls I—

Kernel

Hardware

j_{ Figure 4.15 Processes and Threads in Solaris [MCDO07] \%

Note that there is always exactly one kernel thread for each LWP.

A process may consists of a single ULT bound to a single LWP.

In this case, there is a single thread of execution, correspondingto a
traditional UNIX process.

When concurrency is not required within a single process, an application uses this
process structure.

If an application requires concurrency,
-its process contains multiple threads,
-- each bound to a single LWP,

-- which in turn are each bound to a single kernel thread

55



§\§% Traditional
¥ Unix vs Solaris

UNIX Process Structure Solaris Process Structure

$

Process ID
User IDs

Signal Dispatch Table

Memory Map

e

STACK

Processor

Solaris replaces
the processor state

block with a list of s s
LWPs E
ﬂ Figure 4.16 Process Structure in Traditional UNIX and Solaris [LEWI96]

Animated Slide

Point out the traditional unix structure — CLICK to emphasise the change

This figure compares, in general terms, the process structure of a traditional UNIX
system with that of Solaris.

Typical UNIX implementation of a process includes
* the process ID;
*the user IDs;

* a signal dispatch table, which the kernel uses to decide what to do when
sending a signal to a process;

« file descriptors, which describe the state of files in use by this process;
* a memory map, which defines the address space for this process;

* and a processor state structure, which includes the kernel stack for this
process.

Solaris retains this basic structure but replaces the processor state block with a list of
structures containing one data block for each LWP.

56



Q\
Q/%TJ LWP Data Structure

* An LWP identifier

* The priority of this LWP

* A signal mask

« Saved values of user-level registers

* The kernel stack for this LWP

* Resource usage and profiling data

» Pointer to the corresponding kernel thread

Cl
(L
]

. Sointer to the prOWE

The LWP data structure includes the following elements:
e An LWP identifier

e The priority of this LWP and hence the kernel thread that supports it

* A signal mask that tells the kernel which signals will be accepted
e Saved values of user-level registers (when the LWP is not running)
¢ The kernel stack for this LWP, which includes
-system call arguments,
-- results, and
-- error codes for each call level
® Resource usage and profiling data
* Pointer to the corresponding kernel thread

e Pointer to the process structure

57



,~Q\
@,% Solaris Thread States

i IDL
%

\ A
"U"‘w'x ..... e’
thread create() intr()
v
swtch()
_— syscall()
RUN ONPROC =l SLEEP

preempt ()
wakeup () /

A \
RUN b ONPROC =) SLEEP

prun() pstop() exit() reapt()

Figure 4.17 Solaris Thread States [MCDO07]
_—

A simplified view of both thread execution states.
These states reflect the execution status of both a kernel thread and the LWP bound to it.
- Some kernel threads are not associated with an LWP;
-the same execution diagram applies.
The states are as follows:
* RUN:
- The thread is runnable; that is, the thread is ready to execute.
* ONPROC:
- The thread is executing on a processor.
* SLEEP:
-The thread is blocked.
* STOP:
- The thread is stopped.
* ZOMBIE:
-The thread has terminated.
* FREE:
-Thread resources have been released

-and the thread is awaiting removal from the OS thread data structure.

58



3

TS -

&)@ Linux Tasks

» A process, or task, in Linux is represented
by a task_struct data structure

» This contains a number of categories
including:
— State
— Scheduling information
— |dentifiers
— Interprocess communication »
— And others %

&

A process, or task, in Linux is represented by a task_struct data structure.

The task_struct data structure contains information in a number of categories:

59



% \ Linux
@ | Process/Thread Model

Stopped

signal signal

Running
State

|

termination

creation

Ready Zombie

.
scheduling Executing
e ———————

signal
or
event

Uninterruptible

Interruptible %

ﬁ/ Figure 4.18 Linux Process/Thread Model

Running:

* Corresponds to two states.
-A Running process is either executing or
- it is ready to execute.
Interruptible:

* A blocked state, in which the process is waiting for an event, such as the end
of an 1/O operation, the availability of a resource, or a signal from another
process.

Uninterruptible:
* Another blocked state.

* The difference between the Interruptible state is that in this state, a process
is waiting directly on hardware conditions and therefore will not handle any
signals.

Stopped:

* The process has been halted and can only resume by positive action from
another process.

* E.G., a process that is being debugged can be put into the Stopped state.
Zombie:

* The process has been terminated but, for some reason, still must have its
task structure in the process table.

60



