
These slides are intended to help a teacher develop a presentation. This PowerPoint 
covers the entire chapter and includes too many slides for a single delivery. Professors 
are encouraged to adapt this presentation in ways which are best suited for their 
students and environment.
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Memory management is a complex interrelationship between processor hardware 
and operating system software.

We focus first on the hardware aspect of virtual memory, looking at the use of 
paging, segmentation, and combined paging and segmentation.

Then we look at the issues involved in the design of a virtual memory facility in 
operating systems.
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Some key terms related to virtual memory.
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Two characteristics of paging and segmentation are the keys to this breakthrough in 
memory management:

1. All memory references within a process are logical addresses that are dynamically 
translated into physical addresses at run time.

• A process may be swapped in and out of main memory occupying 
different regions of main memory at different times during the course of 
execution.

2. A process may be broken up into a number of pieces (pages or segments) and 
these pieces need not be contiguously located in main memory during execution.

•The combination of dynamic run-time address translation and the use of a 
page or segment table permits this.
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If the piece (segment or page) that holds the next instruction to be fetched and the 
piece that holds the next data location to be accessed are in main memory, 

•then execution may proceed (at least for a time).
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Suppose that it is time to bring a new process into memory. 

The operating system begins by bringing in only one or a few pieces, to include the 
initial program piece and the initial data piece to which those instructions refer. 

The portion of a process that is actually in main memory at any time is defined to be 
the resident set of the process.

• As the process executes, things proceed smoothly as long as all memory 
references are to locations that are in the resident set.

• Using the segment or page table, the processor always is able to deter mine 
whether this is so. 

If the processor encounters a logical address that is not in main memory, 

• it generates an interrupt indicating a memory access fault.

The operating system puts the interrupted process in a blocking state and takes 
control. 
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For the execution of this process to proceed later, the operating system will need to 
bring into main memory the piece of the process that contains the logical address 
that caused the access fault. 

For this purpose, the operating system issues a disk I/O read request.

After the I/O request has been issued, the operating system can dispatch an other 
process to run while the disk I/O is performed.

Once the desired piece has been brought into main memory, an I/O interrupt is 
issued, giving control back to the operating system, which places the affected process 
back into a Ready state.
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1. More processes may be maintained in main memory. 

• Because we are only going to load some of the pieces of any particular 
process, there is room for more processes. 

• This leads to more efficient utilization of the processor because it is more 
likely that at least one of the more numerous processes will be in a Ready 
state at any particular time.

2. A process may be larger than all of main memory.

• Without the scheme a programmer must be acutely aware of how much 
memory is available. 

• If the program being written is too large, the programmer must devise ways 
to structure the program into pieces that can be loaded separately in some 
sort of overlay strategy. 

• With virtual memory based on paging or segmentation, that job is left to the 
operating system and the hardware. As far as the programmer is concerned, 
he or she is dealing with a huge memory, the size associated with disk storage.

• The operating system automatically loads pieces of a process into main 
memory as required.
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Refer to table 8.2 in the book for a comparison of the characteristics of paging and 
segmentation, with and without the use of virtual

memory.
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In the steady state, practically all of main memory will be occupied with process 
pieces, so that the processor and operating system have direct access to as many 
processes as possible.

Thus, when the operating system brings one piece in, it must throw another out.

If it throws out a piece just before it is used, then it will just have to go get that piece 
again almost immediately.

• Too much of this leads to a condition known as thrashing

• The system spends most of its time swapping pieces rather than executing 
instructions.

The avoidance of thrashing was a major research area in the 1970s and led to a 
variety of complex but effective algorithms. 

In essence, the operating system tries to guess, based on recent history, which 
pieces are least likely to be used in the near future.
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The principle of locality states that program and data references within a process 
tend to cluster.

Hence, the assumption that only a few pieces of a process will be needed over 
a short period of time is valid.

Also, it should be possible to make intelligent guesses about which pieces of a 
process will be needed in the near future, which avoids

thrashing.

One way to confirm the principle of locality is to look at the performance of 
processes in a virtual memory environment. 
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Give a brief description of this figure to the students – the detail probably not be 
clear in the presentation, but it is the overall clustering that is important and 
interesting

Figure 8.1 is a rather famous diagram that dramatically illustrates the principle of 
locality [HATF72]. 

Note that during the lifetime of the process, references are confined to a subset of 
pages.
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For virtual memory to be practical and effective, two ingredients are needed. 

1) there must be hardware support for the paging and/or segmentation scheme to 
be employed. 

2) the operating system must include software for managing the movement of pages 
and/or segments between secondary memory

and main memory. 
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In the discussion of simple paging, we indicated that each process has its own page table.

• When all of its pages are loaded into main memory, the page table for a process is 
created and loaded into main memory.

Each page table entry contains the frame number of the corresponding page in main 
memory.

A page table is also needed for a virtual memory scheme based on paging.

Again, it is typical to associate a unique page table with each process. (Figure 8.2a – next 
slide). 

• The page table entries become more complex because only some of the pages of a 
process may be in main memory.

• A bit is needed in each page table entry to indicate whether the corresponding page 
is present (P) in main memory or not.

• If the bit indicates that the page is in memory, then the entry also includes the 
frame number of that page.

• The page table entry includes a modify (M) bit, indicating whether the contents of 
the corresponding page have been altered since the page was last loaded
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This is a repeat of the notes on the previous slide

It is typical to associate a unique page table with each process. (Figure 8.2a – this 
slide). 

• A bit is needed in each page table entry to indicate whether the 
corresponding page is present (P) in main memory or not.

• If the bit indicates that the page is in memory, then the entry also includes 
the frame number of that page.

• The page table entry includes a modify (M) bit, indicating whether the 
contents of the corresponding page have been altered since the page was last 
loaded
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The basic mechanism for reading a word from memory involves using a page table to 
translate a virtual/logical address, 

consisting of page number and offset, 

Into a physical address, 

consisting of frame number and offset, 

Because the page table is of variable length, depending on the size of the process, we cannot 
expect to hold it in registers.

Instead, it must be in main memory to be accessed.

Figure 8.3 suggests a hardware implementation.

When a particular process is running, a register holds the starting address of the page table 
for that process.

• The page number of a virtual address is used to index that table and look up the 
corresponding frame number.

• This is combined with the offset portion of the virtual address to produce the 
desired real address. 

Typically, the page number field is longer than the frame number field (n > m).
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Figure 8.4 shows an example of a two-level scheme typical for use with a 32-bit 
address. 

If we assume byte-level addressing and 4-kbyte (212) pages, 

• then the 4-Gbyte (232) virtual address space is composed of 220pages. 

If each of these pages is mapped by a 4-byte page table entry (PTE), we can create a 
user page table composed of 220 PTEs requiring 4 Mbyte (222 ) bytes.

This huge user page table, occupying 210 pages, can be kept in virtual memory and 
mapped by a root page table with 210 PTEs occupying

4 Kbyte (212 ) of main memory. 
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Figure 8.5 shows the steps involved in address translation for this scheme.

The root page always remains in main memory.

The first 10 bits of a virtual address are used to index into the root page to find a PTE 
for a page of the user page table. 

• If that page is not in main memory, a page fault occurs.

• If that page is in main memory, then the next 10 bits of the virtual address 
index into the user PTE page to find the PTE for the page that is referenced by 
the virtual address.

19



20



The page number portion of a virtual address is mapped into a hash value using a 
simple hashing function.

The hash value is a pointer to the inverted page table, which contains the page table 
entries.

There is one entry in the inverted page table for each real memory page frame rather 
than one per virtual page.

• Thus a fixed proportion of real memory is required for the tables regardless 
of the number of processes or virtual pages supported. 

Because more than one virtual address may map into the same hash table entry, a 
chaining technique is used for managing the overflow.

The hashing technique results in chains that are typically short—between one 
and two entries.

The page table’s structure is called inverted because it indexes page table entries by 
frame number rather than by virtual page

number
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Page number: 

• This is the page number portion of the virtual address.

Process identifier: 

• The process that owns this page. 

• The combination of page number and process identifier identify a page 
within the virtual address space of a particular process.

Control bits: 

• This field includes flags, such as valid, referenced, and modified; and 
protection and locking information.

Chain pointer: 

•Contains the index value (number between 0 and 2m - 1) of the next entry in 
the chain.

•Otherwise, Null if there are no chained entries for this entry. 
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Refer to previous description of the fields

In this example, the virtual address includes an n-bit page number, with n > m.

The hash function maps the n-bit page number into an m-bit quantity, which is used 
to index into the inverted page table.
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This cache functions in the same way as a memory cache and contains those page 
table entries that have been most recently used.
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The flowchart shows that if the desired page is not in main memory, a page fault 
interrupt causes the page fault handling routine to be invoked. 

To keep the flowchart simple, the fact that the operating system may dispatch 
another process while disk I/O is underway is not shown. 

By the principle of locality, most virtual memory references will be to locations in 
recently used pages. Therefore, most references will involve page table entries in the 
cache.
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Because the TLB only contains some of the entries in a full page table, we cannot 
simply index into the TLB based on page number. 

• Instead, each entry in the TLB must include the page number as well as the 
complete page table entry.

The processor is equipped with hardware that allows it to interrogate simultaneously 
a number of TLB entries to determine if there is a match on page number.

This technique is referred to as associative mapping.
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This slide contrasts associative mapping with direct mapping or indexing, used for 
lookup in the page table.

The design of the TLB also must consider the way in which entries are organized in 
the TLB and which entry to replace when a new entry is brought in.

These issues must be considered in any hardware cache design. 
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The virtual memory mechanism must interact with the cache system (not the TLB 
cache, but the main memory cache)

A virtual address will generally be in the form of a page number, offset.

First, the memory system consults the TLB to see if the matching page table entry is 
present. 

• If it is, the real (physical) address is generated by combining the frame number with 
the offset. 

• If not, the entry is accessed from a page table. 

• Once the real address is generated, which is in the form of a tag and a 
remainder, the cache is consulted to see if the block containing that word is 
present. 

•If so, it is returned to the CPU. 

•If not, the word is retrieved from main memory.
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An important hardware design decision is the size of page to be used.

There are several factors to consider. 

• internal fragmentation. Clearly, the smaller the page size, the less the 
amount of internal fragmentation. To optimize the use of main memory, we 
would like to reduce internal fragmentation. 

• BUT the smaller the page, the greater the number of pages required per 
process. More pages per process means larger page tables. For large 
programs in a heavily multiprogrammed environment, this may mean that 
some portion of the page tables of active processes must be in virtual 
memory, not in main memory. 

•The physical characteristics of most secondary-memory devices, which are 
rotational, favour a larger page size for more efficient block transfer of data
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Complicating these matters is the effect of page size on the rate at which page faults 
occur.

This behavior, is based on the principle of locality. 

If the page size is very small, then ordinarily a relatively large number of pages will be 
available in main memory for a process.

• After a time, the pages in memory will all contain portions of the process 
near recent references.

• Thus, the page fault rate should be low.

As the size of the page is increased, each individual page will contain locations further 
and further from any particular recent reference.

• Thus the effect of the principle of locality is weakened and the page fault 
rate begins to rise. 

Eventually, however, the page fault rate will begin to fall as the size of a page 
approaches the size of the entire process (point P in the diagram).

• When a single page encompasses the entire process, there will be no page 
faults.
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Much of this is explained on the previous slide

A further complication is that the page fault rate is also determined by the number of 
frames allocated to a process. 

Figure 8.11b shows that, for a fixed page size, the fault rate drops as the number of 
pages maintained in main memory grows.

• Thus, a software policy (the amount of memory to allocate to each process) 
interacts with a hardware design decision (page size).
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Finally, the design issue of page size is related to the size of physical main memory 
and program size.

At the same time that main memory is getting larger, the address space used by 
applications is also growing. 

The trend is most obvious on personal computers and workstations, where 
applications are becoming increasingly complex. 

• Furthermore, contemporary programming techniques used in large pro 
grams tend to decrease the locality of references within a process
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Segmentation allows the programmer to view memory as consisting of multiple address spaces or segments. 

Segments may be of unequal, indeed dynamic, size. 

Memory references consist of a form of address (segment number, offset).

This organization has a number of advantages to the programmer over a nonsegmented address space:

1. It simplifies the handling of growing data structures. 

• If the programmer doesn’t know ahead of time how large a particular data structure will become, it is 
necessary to guess unless dynamic segment sizes are allowed. With segmented virtual memory, the data 
structure can be assigned its own segment, and the operating system will expand or shrink the segment as 
needed. 

• If a segment that needs to be expanded is in main memory and there is insufficient room, the operating system 
may move the segment to a larger area of main memory, if available, or swap it out. The enlarged segment 
would be swapped back in at the next opportunity.

2. It allows programs to be altered and recompiled independently, 

• without requiring the entire set of programs to be relinked and reloaded.

• Again, this is accomplished using multiple segments.

3. It lends itself to sharing among processes. 

• A programmer can place a utility program or a useful table of data in a segment that can be referenced by other 
processes.

4. It lends itself to protection.

• Because a segment can be constructed to contain a well-defined set of programs or data, the programmer or 
system administrator can assign access privileges in a convenient fashion.
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Each segment table entry contains the starting address of the corresponding segment in main 
memory, as well as the length of the segment.

The same device, a segment table, is needed when we consider a virtual memory scheme 
based on segmentation. 

• Again, it is typical to associate a unique segment table with each process. 

But because only some of the segments of a process may be in main memory, a bit is needed 
in each segment table entry to indicate whether the corresponding segment is present in 
main memory or not.

• If the bit indicates that the segment is in memory, then the entry also includes the 
starting address and length of that segment.

Another control bit in the segmentation table entry is a modify bit, indicating whether the 
contents of the corresponding segment have been altered since the segment was last loaded 
into main memory. 

• If there has been no change, then it is not necessary to write the segment out when 
it comes time to replace the segment in the frame that it currently occupies. 

Other control bits may also be present.
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Reading a word from memory involves the translation of a virtual, or logical, address, 
consisting of segment number and offset, into a physical address, using a segment 
table. 

We cannot expect to hold the segment table in registers because it is of variable 
length, depending on the size of the process

• Instead, it must be in main memory to be accessed. 

This figure suggests a hardware implementation of this scheme (note similarity to 
Figure 8.3).

When a particular process is running, a register holds the starting address of the 
segment table for that process.

•The segment number of a virtual address is used to index that table and look 
up the corresponding main memory address for the start of the segment.

• This is added to the offset portion of the virtual address to produce the 
desired real address.
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In a combined paging/segmentation system, a user’s address space is broken up into 
a number of segments, 

• at the discretion of the programmer.

Each segment is, in turn, broken up into a number of fixed-size pages, 

• which are equal in length to a main memory frame.

If a segment has length less than that of a page, the segment occupies just one page. 

From the programmer’s point of view, a logical address still consists of a segment 
number and a segment offset. 

From the system’s point of view, the segment offset is viewed as a page number and 
page offset for a page within the specified segment.
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This figure (8.2c) suggests the segment table entry and page table entry formats.

As before, the segment table entry contains the length of the segment.

It also contains a base field, which now refers to a page table.

• The present and modified bits are not needed because these matters are 
handled at the page level.

• Other control bits may be used, for purposes of sharing and protection.

The page table entry is essentially the same as is used in a pure paging system. 

• Each page number is mapped into a corresponding frame number if the page 
is present in main memory.

• The modified bit indicates whether this page needs to be written back out 
when the frame is allocated to another page.

• There may be other control bits dealing with protection or other aspects of 
memory management.
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This figure suggests a structure to support combined paging/segmentation (note 
similarity to Figure 8.5).

Associated with each process is a segment table and a number of page tables, one 
per process segment.

When a particular process is running, a register holds the starting address of the 
segment table for that process. 

Presented with a virtual address, the processor uses the segment number portion to 
index into the process segment table to find the page table for that segment.

• Then the page number portion of the virtual address is used to index the 
page table and look up the corresponding frame number.

• This is combined with the offset portion of the virtual address to produce 
the desired real address.
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Segmentation lends itself to the implementation of protection and sharing policies.

As each segment table entry includes a length as well as a base address, a program 
cannot inadvertently access a main memory location beyond the limits of a segment.

To achieve sharing, it is possible for a segment to be referenced in the segment tables 
of more than one process. 
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Figure 8.14 illustrates the types of protection relationships that can be enforced in 
such a system.
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The design of the memory management portion of an operating system depends on 
three fundamental areas of choice:

• Whether or not to use virtual memory techniques

• The use of paging or segmentation or both

• The algorithms employed for various aspects of memory management

The first two are determined largely by hardware support. But, with few exceptions 
(DOS for old PC’s) all major OS’s support Virtual Memory.

47



We would like to minimize the rate at which page faults occur, because page faults 
cause considerable software overhead.

•At a minimum, the overhead includes deciding which resident page or pages 
to replace, 

• and the I/O of exchanging pages.

•Also, the operating system must schedule another process to run during the 
page I/O, causing a process switch.

In all of the areas referred to in Table 8.4, there is no definitive policy that works best.

The performance of any particular set of policies depends on 

• main memory size, 

• the relative speed of main and secondary memory, 

• the size and number of processes competing for resources, 

• and the execution behaviour of individual programs.
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The fetch policy determines when a page should be brought into main memory. 

The two common alternatives are demand paging and prepaging
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With demand paging, 

• A page is brought into main memory only when a reference is made to a location on that page. 

• When a process is first started, there will be a flurry of page faults.

• As more and more pages are brought in, the principle of locality suggests that most future references 
will be to pages that have recently been brought in.

• Thus, after a time, matters should settle down and the number of page faults should drop to a very 
low level.

With prepaging, 

• Pages other than the one demanded by a page fault are brought in. 

• If the pages of a process are stored contiguously in secondary memory, then it is more efficient to 
bring in a number of contiguous pages at one time rather than bringing them in one at a time over an 
extended period.

• Of course, this policy is ineffective if most of the extra pages that are brought in are not referenced.

The prepaging policy could be employed either when a process first starts up, in which case the programmer 
would somehow have to designate desired pages, or every time a page fault occurs. 

The latter would seem preferable because it is invisible to the programmer. 

However, the utility of prepaging has not been established.

Prepaging should not be confused with swapping.

• When a process is swapped out of memory and put in a suspended state, all of its resident pages are 
moved out.

• When the process is resumed, all of the pages that were previously in main memory are returned to 
main memory.
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The placement policy determines where in real memory a process piece is to reside.

In a pure segmentation system, the placement policy is an important design issue;

policies such as best-fit, first-fit, and etc are possible alternatives. 

However, for a system that uses either pure paging or paging combined with 
segmentation, 

placement is usually irrelevant because the address translation hardware and 
the main memory access hardware can perform their functions for any page-
frame combination with equal efficiency.
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This topic is sometimes difficult to explain because several interrelated concepts are involved:

• How many page frames are to be allocated to each active process

• Whether the set of pages to be considered for replacement should be limited to those of the process 
that caused the page fault or encompass all the page frames in main memory

• Among the set of pages considered, which particular page should be selected for replacement

When all of the frames in main memory are occupied and it is necessary to bring in a new page to satisfy a page 
fault, 

the replacement policy determines which page currently in memory is to be replaced.
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One tradeoff that must be considered is that the more elaborate and sophisticated 
the replacement policy, the greater the hardware and software overhead to 
implement it
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Camera jumps to animation of Page Replacement Algorithm 
http://gaia.ecs.csus.edu/~zhangd/oscal/PagingApplet.html

One restriction on replacement policy needs to be mentioned before looking at 
various algorithms: 

• Some of the frames in main memory may be locked.

• When a frame is locked, the page currently stored in that frame may not be 
replaced. 

• Much of the kernel of the operating system is held on locked frames, as well 
as key control structures. 

• In addition, I/O buffers and other time-critical areas may be locked into main 
memory frames.

Locking is achieved by associating a lock bit with each frame. 

This bit may be kept in a frame table as well as being included in the current page 
table.
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Figure 8.15 gives an example of the optimal policy. The example assumes a

fixed frame allocation (fixed resident set size) for this process of three frames. The

execution of the process requires reference to five distinct pages. The page address

stream formed by executing the program is

232152453252

which means that the first page referenced is 2, the second page referenced is 3, and

so on. The optimal policy produces three page faults after the frame allocation has

been filled.
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The optimal policy selects for replacement that page for which the time to the next 
reference is the longest. 

• This policy results in the fewest number of page faults. 

• BUT Clearly, this policy is impossible to implement, because it would require 
the operating system to have perfect knowledge of future events. 

•However, it does serve as a standard against which to judge real world 
algorithms.
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The least recently used (LRU) policy replaces the page in memory that has not been 
referenced for the longest time. 

By the principle of locality, this should be the page least likely to be referenced in the 
near future.

And, in fact, the LRU policy does nearly as well as the optimal policy.

The problem with this approach is the difficulty in implementation.

One approach would be to tag each page with the time of its last reference; 

• this would have to be done at each memory reference, both instruction and 
data.

• Even if the hardware would support such a scheme, the overhead would be 
tremendous.

• Alternatively, one could maintain a stack of page references, again an 
expensive prospect.
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The first-in-first-out (FIFO) policy treats the page frames allocated to a process as a 
circular buffer, and pages are removed in round-robin style.

All that is required is a pointer that circles through the page frames of the process. 

This is one of the simplest page replacement policies to implement.

The logic behind this choice is that one is replacing the page that has been in memory 
the longest:

•A page fetched into memory a long time ago may have now fallen out of use.

• This reasoning will often be wrong, because there will often be regions of 
program or data that are heavily used throughout the life of a program.

• Those pages will be repeatedly paged in and out by the FIFO algorithm.
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Continuing our example in Figure 8.15, the FIFO policy results in six page faults.

Note that LRU recognizes that pages 2 and 5 are referenced more frequently than 
other pages, whereas FIFO does not.

Although the LRU policy does nearly as well as an optimal policy, it is difficult to 
implement and imposes significant overhead.

• On the other hand, the FIFO policy is very simple to implement but performs 
relatively poorly. 

Over the years, operating system designers have tried a number of other algorithms 
to approximate the performance of LRU while imposing little overhead.
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Camera jumps to animation of clock policy at 
http://gaia.ecs.csus.edu/~zhangd/oscal/ClockFiles/Clock.htm

The simplest form of clock policy requires the association of an additional bit with each 
frame, referred to as the use bit.

When a page is first loaded into a frame in memory, the use bit for that frame is set to 1.

• Whenever the page is subsequently referenced (after the reference that generated 
the page fault), its use bit is set to 1.

The set of frames that are candidates for replacement is considered to be a circular buffer, 
with which a pointer is associated.

• When a page is replaced, the pointer is set to indicate the next frame in the buffer 
after the one just updated.

• When it comes time to replace a page, the operating system scans the buffer to find 
a frame with a use bit set to zero.

• Each time it encounters a frame with a use bit of 1, it resets that bit to zero and 
continues on. 

• If any of the frames in the buffer have a use bit of zero at the beginning of this 
process, the first such frame encountered is chosen for replacement.

•If all of the frames have a use bit of 1, then the pointer will make one complete cycle 
through the buffer, setting all the use bits to zero, and stop at its original position, 
replacing the page in that frame.

This policy is similar to FIFO, except that, in the clock policy, any frame with a use bit of 1 is 
passed over by the algorithm.
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The presence of an asterisk indicates that the corresponding use bit is equal to 1,

and the arrow indicates the current position of the pointer. 

Note that the clock policy is adept at protecting frames 2 and 5 from replacement.
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Continued on next slide

This figure (8.16) provides an example of the simple clock policy mechanism.

A circular buffer of n main memory frames is available for page replacement. 

Just prior to the replacement of a page from the buffer with incoming page 727, 

• the next frame pointer points at frame 2, which contains page 45.

The clock policy is now executed.

• Because the use bit for page 45 in frame 2 is equal to 1, this page is not 
replaced.

• Instead, the use bit is set to zero and the pointer advances. 

• Similarly, page 191 in frame 3 is not replaced; its use bit is set to zero and 
the pointer advances. 

• In the next frame, frame 4, the use bit is set to 0.Therefore, page 556 is 
replaced with page 727.

•The use bit is set to 1 for this frame and the pointer advances to frame 5, 
completing the page replacement procedure.
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Explanation on previous slide
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Explanation two slides previous
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Figure 8.17 shows the results of an experiment reported in, which compares the four 
algorithms that we have been discussing; 

It is assumed that the number of page frames assigned to a process is fixed.

The results are based on the execution of 0.25 x 106 references in a FORTRAN program, using 
a page size of 256 words.

Baer ran the experiment with frame allocations of 6, 8, 10, 12, and 14 frames.

The differences among the four policies are most striking at small allocations, with FIFO being 
over a factor of 2 worse than optimal.

All four curves have the same shape as the idealized behavior shown in Figure 8.11b. 

In order to run efficiently, we would like to be to the right of the knee of the curve (with a 
small page fault rate) while at the same time keeping a

small frame allocation (to the left of the knee of the curve).

These two constraints indicate that a desirable mode of operation would be at the knee of 
the curve.
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Although LRU and the clock policies are superior to FIFO, 

they both involve complexity and overhead not suffered with FIFO.

There is also the related issue that the cost of replacing a page that has been modified is greater than for one that has not, 

because the former must be written back out to secondary memory.

An interesting strategy that can improve paging performance and allow the use of a simpler page replacement policy is page buffering.

E.G. VAX VMS approach.

The page replacement algorithm is simple FIFO. 

To improve performance, a replaced page is not lost but rather is assigned to one of two lists: 

• the free page list if the page has not been modified, or 

• the modified page list if it has.

Note that the page is not physically moved about in main memory; 

instead, the entry in the page table for this page is removed and placed in either the free or modified page list.

The free page list is a list of page frames available for reading in pages. 

• When a page is to be read in, the page frame at the head of the list is used, destroying the page that was there.

• When an unmodified page is to be replaced, it remains in memory and its page frame is added to the tail of the free page list.

• Similarly, when a modified page is to be written out and replaced, its page frame is added to the tail of the modified page list.

The important aspect of these manoeuvres is that the page to be replaced remains in memory.

• If the process references that page, it is returned to the resident set of that process at little cost. 

• In effect, the free and modified page lists act as a cache of pages. 

The modified page list serves another useful function: 

Modified pages are written out in clusters rather than one at a time - significantly reducing the number of I/O operations and 
therefore the amount of disk access time.
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Main memory size is getting larger and the locality of applications is decreasing. 

In compensation, cache sizes have been increasing.

Large cache sizes, even multimegabyte ones, are now feasible design alternatives.

With a large cache, the replacement of virtual memory pages can have a performance 
impact.

• If the page frame selected for replacement is in the cache, then that cache 
block is lost as well as the page that it holds.

In systems that use some form of page buffering, it is possible to improve cache 
performance by supplementing the page replacement policy with a policy for page 
placement in the page buffer.

Most operating systems place pages by selecting an arbitrary page frame from the 
page buffer; typically a first-in-first-out discipline

is used. 

• Careful page placement strategy can result in 10 to 20% fewer cache misses 
than naive placement.
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With paged virtual memory, it is not necessary and indeed may not be possible to 
bring all of the pages of a process into main memory to prepare it for execution. 

Thus, the operating system must decide how many pages to bring in

IE , how much main memory to allocate to a particular process. 

Several factors come into play:

• The smaller the amount of memory allocated to a process, the more 
processes that can reside in main memory at any one time. This increases the 
probability that the operating system will find at least one ready process at 
any given time and hence reduces the time lost due to swapping.

• If a relatively small number of pages of a process are in main memory, then, 
despite the principle of locality, the rate of page faults will be rather high 

• Beyond a certain size, additional allocation of main memory to a particular 
process will have no noticeable effect on the page fault rate for that process 
because of the principle of locality.
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A fixed-allocation policy gives a process a fixed number of frames in main memory 
within which to execute.

• That number is decided at initial load time (process creation time) and may 
be determined based on the type of process (interactive, batch, type of 
application) or may be based on guidance from the programmer or system 
manager.

• Whenever a page fault occurs in the execution of a process, one of the pages 
of that process must be replaced by the needed page.

A variable-allocation policy allows the number of page frames allocated to a process 
to be varied over the lifetime of the process.

• Ideally, a process that is suffering persistently high levels of page faults, 
indicating that the principle of locality only holds in a weak form for that 
process, will be given additional page frames to reduce the page fault rate; 

• whereas a process with an exceptionally low page fault rate will be given a 
reduced allocation, with the hope that this will not noticeably increase the 
page fault rate.

• The use of a variable-allocation policy relates to the concept of replacement 
scope
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The scope of a replacement strategy can be categorized as global or local.

Both types of policies are activated by a page fault when there are no free page 
frames.

A local replacement policy chooses only among the resident pages of the process that 
generated the page fault in selecting a page to replace.

A global replacement policy considers all unlocked pages in main memory as 
candidates for replacement, regardless of which process owns a particular page.
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A process that is running in main memory with a fixed number of frames.

When a page fault occurs, the operating system must choose which page from among 
the currently resident pages for this process is to be replaced.

With a fixed-allocation policy, it is necessary to decide ahead of time the amount of 
allocation to give to a process.

• This could be based on the type of application and the amount requested by 
the program.

Two drawbacks: 

• If allocations tend to be too small, then there will be a high page fault rate, 
causing the entire multiprogramming system to run slowly. 

• If allocations tend to be unnecessarily large, then there will be too few 
programs in main memory and there will either be considerable processor idle 
time or considerable time spent in swapping.
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This combination is perhaps the easiest to implement and has been adopted in a number of operating 
systems.

At any given time, there are a number of processes in main memory, each with a certain number of 
frames allocated to it.

Typically, the operating system also maintains a list of free frames. 

When a page fault occurs, a free frame is added to the resident set of a process and the page is 
brought in. 

Thus, a process experiencing page faults will gradually grow in size, which should help reduce 
overall page faults in the system.

The difficulty with this approach is in the replacement choice. 

•When there are no free frames available, the operating system must choose a page currently 
in memory to replace.

• The selection is made from among all of the frames in memory, except for locked frames 
such as those of the kernel.

• The process that suffers the reduction in resident set size may not be optimum.
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1. When a new process is loaded into main memory, allocate to it a certain number 
of page frames as its resident set, based on application type, program request, or 
other criteria.

• Use either prepaging or demand paging to fill up the allocation.

2. When a page fault occurs, select the page to replace from among the resident set 
of the process that suffers the fault.

3. From time to time, re-evaluate the allocation provided to the process, and increase 
or decrease it to improve overall performance.

With this strategy, the decision to increase or decrease a resident set size is a 
deliberate one and is based on an assessment of the likely future demands of active 
processes.

• Because of this evaluation, such a strategy is more complex than a simple 
global replacement policy.

• However, it may yield better performance.

77



78



A cleaning policy is the opposite of a fetch policy; it is concerned with determining 
when a modified page should be written out to secondary memory. 

With demand cleaning, a page is written out to secondary memory only when it has 
been selected for replacement.

A precleaning policy writes modified pages before their page frames are needed so 
that pages can be written out in batches.
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Clean only pages that are replaceable, but decouple the cleaning and replacement 
operations.

With page buffering, replaced pages can be placed on two lists: 

• modified and unmodified. 

The pages on the modified list can periodically be written out in batches and moved 
to the unmodified list.

A page on the unmodified list is either reclaimed if it is referenced, or lost when its 
frame is assigned to another page.
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Load control is concerned with determining the number of processes that will be 
resident in main memory - the multiprogramming level.

The load control policy is critical in effective memory management. 

• If too few processes are resident at any one time, then there will be many 
occasions when all processes are blocked, and much time will be spent in 
swapping.

• On the other hand, if too many processes are resident, then, on average, the 
size of the resident set of each process will be inadequate and frequent 
faulting will occur resulting in thrashing.
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As the multiprogramming level increases from a small value, one would expect to see 
processor utilization rise, because there is less chance that all resident processes are 
blocked.

However, a point is reached at which the average resident set is inadequate.

• At this point, the number of page faults rises dramatically, and processor 
utilization collapses.
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If the degree of multiprogramming is to be reduced, one

or more of the currently resident processes must be suspended (swapped out).

[CARR84] lists six possibilities:

83



Lowest-priority process: 

• This implements a scheduling policy decision and is unrelated to 
performance issues.

Faulting process: 

• There is a greater probability that the faulting task does not have its working 
set resident, and performance would suffer least by suspending it. 

• Immediate payoff because it blocks a process that is about to be blocked 
anyway and it eliminates the overhead of a page replacement and I/O 
operation.

Last process activated: 

• This is the process least likely to have its working set resident.
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Process with the smallest resident set: 

• This will require the least future effort to reload.

• However, it penalizes programs with strong locality.

Largest process:

• This obtains the most free frames in an overcommitted memory, making 
additional deactivations unlikely soon.

Process with the largest remaining execution window: 

• In most process scheduling schemes, a process may only run for a certain 
quantum of time before being interrupted and placed at the end of the Ready 
queue. 

• This approximates a shortest-processing-time-first scheduling discipline.
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Because UNIX is intended to be machine independent, its memory management 
scheme will vary from one system to the next.

• Earlier versions of UNIX simply used variable partitioning with no virtual 
memory scheme. 

• Current implementations of UNIX and Solaris make use of paged virtual 
memory.
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provides a virtual memory capability that allocates page frames in main memory to 
processes and also allocates page frames to disk block

buffers.

Although this is an effective memory-management scheme for user processes and 
disk I/O, a paged virtual memory scheme is less suited to managing the memory 
allocation for the kernel
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Page Table:

•Typically, there will be one page table per process, with one entry for each 
page in virtual memory for that process.

Disk block descriptor: 

• Associated with each page of a process is an entry in this table that 
describes the disk copy of the virtual page.

Page frame data table: 

• Describes each frame of real memory and is indexed by frame number. This 
table is used by the replacement algorithm.

Swap-use table: 

• There is one swap-use table for each swap device, with one entry for each 
page on the device.
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The page frame data table is used for page replacement.

Several pointers are used to create lists within this table.

• All of the available frames are linked together in a list of free frames 
available for bringing in pages.

• When the number of available frames drops below a certain threshold, the 
kernel will steal a number of frames to compensate.
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The page replacement algorithm used in SVR4 is a refinement of the clock policy 
algorithm known as the two-handed clock algorithm

The algorithm uses the reference bit in the page table entry for each page in memory 
that is eligible (not locked) to be swapped out.

• This bit is set to 0 when the page is first brought in and set to 1 when the 
page is referenced for a read or write.

• One hand in the clock algorithm, the fronthand, sweeps through the pages 
on the list of eligible pages and sets the reference bit to 0 on each page.

• Sometime later, the backhand sweeps through the same list and checks the 
reference bit.

• If the bit is set to 1, then that page has been referenced since the fronthand 
swept by; these frames are ignored. 

• If the bit is still set to 0, then the page has not been referenced in the time 
interval between the visit by fronthand and backhand; these pages are placed 
on a list to be paged out.
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Two parameters determine the operation of the algorithm:

Scanrate: The rate at which the two hands scan through the page list, in pages per 
second

Handspread: The gap between fronthand and backhand

These two parameters have default values set at boot time based on the amount of 
physical memory.

The scanrate parameter can be altered to meet changing conditions. 

•As the amount of free memory shrinks, the clock hands move more rapidly to 
free up more pages.

The handspread parameter, together with scanrate, determines the window of 
opportunity to use a page before it is swapped out due to lack of use.
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The kernel generates and destroys small tables and buffers frequently during the 
course of execution, each of which requires dynamic memory allocation.

Examples include:

• The pathname translation routing may allocate a buffer to copy a pathname 
from user space.

• The allocb() routine allocates STREAMS buffers of arbitrary size.

• Many UNIX implementations allocate zombie structures to retain exit status 
and resource usage information about deceased processes.

• In SVR4 and Solaris, the kernel allocates many objects (such as proc 
structures, vnodes, and file descriptor blocks) dynamically when needed.

Most of these blocks are significantly smaller than the typical machine page size, 

• therefore the paging mechanism would be inefficient for dynamic kernel 
memory allocation.

• For SVR4, a modification of the buddy system is used.

96



Therefore, if a block of size 2i is released and is immediately coalesced with its buddy 

into a block of size 2
i+1

, the kernel may next request a block of size 2i , which may 

necessitate splitting the larger block again.

To avoid this unnecessary coalescing and splitting, the lazy buddy system defers 
coalescing until it seems likely that it is needed, and

then coalesces as many blocks as possible.

97



Ni = current number of blocks of size 2i

Ai = current number of blocks of size 2i that are allocated (occupied).

Gi = current number of blocks of size 2i that are globally free.

• These are blocks that are eligible for coalescing;

• If the buddy of such a block becomes globally free, then the two blocks will 

be coalesced into a globally free block of size 2
i+1

• All free blocks (holes) in the standard buddy system could be considered 

globally free.

Li = current number of blocks of size 2i that are locally free. 

• These are blocks that are not eligible for coalescing.

• Even if the buddy of such a block becomes free, the two blocks are not 
coalesced.

• Rather, the locally free blocks are retained in anticipation of future demand 
for a block of that size.
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Linux shares many of the characteristics of the memory management schemes of 
other UNIX implementations but has its own unique features. 

Overall, the Linux memory-management scheme is quite complex. 

Two main aspects of Linux memory management: 

• process virtual memory, and 

• kernel memory allocation.
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Three-level page table structure, consisting of the following types of tables

• each individual table is the size of one page:

Page directory: 

• An active process has a single page directory that is the size of one page.

• Each entry in the page directory points to one page of the page middle 
directory.

• The page directory must be in main memory for an active process.

Page middle directory: 

• May span multiple pages.

• Each entry in the page middle directory points to one page in the page table.
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Page table

• May also span multiple pages.

• Each page table entry refers to one virtual page of the process.
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A virtual address in Linux is viewed as consisting of four fields (Figure 8.25).

The leftmost (most significant) field is used as an index into the page directory. 

The next field serves as an index into the page middle directory. 

The third field serves as an index into the page table. 

The fourth field gives the offset within the selected page of memory.
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The Linux page replacement algorithm is based on the clock algorithm described in 
Section 8.2 (see Figure 8.16). 

In the simple clock algorithm, a use bit and a modify bit are associated with each 
page in main memory. 

In the Linux scheme, the use bit is replaced with an 8-bit age variable.

Each time that a page is accessed, the age variable is incremented. 

In the background, Linux periodically sweeps through the global page pool and 
decrements the age variable for each page as it rotates through all the pages in main 
memory. 

• A page with an age of 0 is an “old” page that has not been referenced in 
some time and is the best candidate for replacement.

• The larger the value of age, the more frequently a page has been used in 
recent times and the less eligible it is for replacement.

•Thus, the Linux algorithm is a form of least frequently used policy.
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The Windows virtual memory manager controls how memory is allocated and how 
paging is performed. 

The memory manager is designed to operate over a variety of platforms and use page 
sizes ranging from 4 Kbytes to 64 Kbytes. 

Intel and AMD64 platforms have 4096 bytes per page and Intel Itanium platforms 
have 8192 bytes per page.
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On 32-bit platforms, each Windows user process sees a separate 32-bit address 
space, allowing 4 Gbytes of virtual memory per process. 

By default, a portion of this memory is reserved for the operating system, so each 
user actually has 2 Gbytes of available virtual address space 

• and all processes share the same 2 Gbytes of system space.

There is an option that allows user space to be increased to 3 Gbytes, leaving 1 Gbyte 
for system space to support large memory-intensive applications on servers with 
multiple gigabytes of RAM
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This figure shows the default virtual address space seen by a normal 32-bit user 
process. 

It consists of four regions:

• 0x00000000 to 0x0000FFFF: 

• Set aside to help programmers catch NULL-pointer assignments.

• 0x00010000 to 0x7FFEFFFF: 

Available user address space. This space is divided into pages that may be 
loaded into main memory.

• 0x7FFF0000 to 0x7FFFFFFF:

• A guard page inaccessible to the user.

• This page makes it easier for the operating system to check on out-of-
bounds pointer references.

• 0x80000000 to 0xFFFFFFFF:

• System address space. 

• This 2-Gbyte process is used for the Windows Executive, Kernel, and device 
drivers.

On 64-bit platforms, 8TB of user address space is available in Windows Vista.
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When a process is created, it can in principle make use of the entire user space of 
almost 2 Gbytes. 

This space is divided into fixed-size pages, any of which can be brought into main 
memory, but the operating system manages them in contiguous regions allocated on 
64-Kbyte boundaries.

A region can be in one of three states:

Available: 

•Addresses not currently used by this process.

Reserved: 

•Addresses that the virtual memory manager has set aside for a process so 
they cannot be allocated to another use (e.g., preserving space for a stack to 
grow).

Committed: 

•Addresses for which the virtual memory manager has initialized for use by 
the process to access virtual memory pages.

• These pages can reside either on disk or in physical memory.
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The resident set management scheme used by Windows is variable allocation, local 
scope 

When a process is first activated, it is assigned data structures to manage its working 
set.

• As the pages needed by the process are brought into physical memory the 
memory manager uses the data structures to keep track of the pages assigned 
to the process. 

Working sets of active processes are adjusted using the following general 
conventions:

• When main memory is plentiful, the virtual memory manager allows the 
resident sets of active processes to grow. 

•To do this, when a page fault occurs, a new physical page is added to 
the process but no older page is swapped out, resulting in an increase 
of the resident set of that process by one page

• When memory becomes scarce, the virtual memory manager recovers 
memory for the system by removing less recently used pages out of the 
working sets of active processes, reducing the size of those resident sets.
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